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Abstract

This is a summary of some basic mathematics that are commonly used in machine learning
and data mining.

1 Combinational Analysis

Combinatorics is a branch of mathematics concerning the study of finite or countable discrete
structures. (Z) represents the number o possible combinations of n objects take r at a time.
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The binomial theorem use

2 Probability

The probability a discrete variable x takes value X is: 0 < P(x = X) < 1. Let X be the set of all
possible values of z, we then have:
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Pz =X,y =Y) is the joint probability that both event x = X and y = Y occur. Variables can
be “summed out” of joint distributions, this is called marginal distribution, i.e.,

p(z) = /p(fﬂ, y)dy

If z is a continuous variable!:

or

py) = /p(x, y)dz

If P(z,y) = P(x)P(y), then random variable x and y are independent. If and only if  and y
are independent, the equation P(x,y) = P(z)P(y) holds. Otherwise:

P(z,y) = P(z|y)P(y)

IWe use P(-) to represent the discrete probability and p(-) to represent distribution.




where P(z|y) is called conditional probability. Similarly, the following equation also holds
P(z,y) = P(ylz)P(x)

We then can obtain:
P(z|y)P(y) = P(ylz)P(x)

By moving P(y) to the right-hand side of the equation, we will then get one of the most important
equation in modern probability theory: Bayes rule or Bayes theorem:

P(y|lx)P(x
P(zly) = Ilg(y)<)
It can be also written in another form:
P(y|z)P(z)
P(zly) =
W) =5 Pl P

where ) is the set of all possible values of y. Sometimes, it is also written as:

 Pyle)P(a)
PEl) = & bty P

Here, we are free to condition the whole thing on any set of assumptions, H, such that:

> Pla,y[H) = Pa|H)

The Bayes rule then becomes:

Plaly, H) = P(ylﬂj;z;iﬁ)(wl“rl)

Bayesian methods for machine learning is becoming popular in recent years. We can rewrite Bayes
theorem in the machine learning style: Given training data D and a model H (e.g., linear model,
neural networks or other probabilistic models which are characterized by parameters) defined by
parameter 6:
D0, H)P(O|H)

P(D[H)

where P(D|0,H) is the likelihood, P(f|H) is called prior probability and P(6|D,H) is called
posterior of § given D. Suppose we want to compare models, e.g., polynomial or neural networks,
which model is better? We need to compare it by considering all possible parameter settings. The
evidence is defined by:

P, 1) = 2

P(D|H) = /P(D\G,’H)P(&W)d&

We will consider such Bayesian probabilistic models later.

3 Expectation, Variance

The expectation of a random variable z is:

Elz] =) aP(x)
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or for continuous variables:



The variance of an random variable x:

0t = Y (o= Bla])*P(w)
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Standard deviation o is the square root of the variance. Standard deviation is the expectation of
the distances from each data elements z to F[z], or:

0% = El(x — E[x])?] (3)

4 Information Theory

4.1 Entropy

Given two unrelated (independent) events z and y. The information we obtained from both events
should be

hz,y) = h(z) + h(y) (4)

where h(x) is an arbitrary measure for information. h(z) should be a function of the probability
distribution of z (i.e. h(z) = f(p(z)) and f(-) should be a function satisfying the commons sense that,
an event is more rare, more information it could provide us. To satisfy the above two constraints.
(Shannon 1948) employed negative logarithm as the measure for information content.

h(z) = —log P(x) = log (5)

P(x)

The entropy is an expectation of information measure h(x).

1
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(@) = [ ple)tos (6)
For a discrete random variable x is defined as follows:
=Y P )log 5— (7)
reEX )
The joint entropy of two random discrete variables z and y is defined as:
Z P(z,y)log —— (8)
TeX,yey ( )
The conditional entropy of a discrete random variable x given the value of a discrete random
variable y = 1/ is defined as:

Hiely =y/) = Y Plaly =) log rom—s (9)
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The (expected) conditional entropy of x given y, or the equivocation of x about y is then given
by:

H(zly) = E[H(zly)] = Y P(y)H(xly) = Y P(y) Y Plaly)log 5 |> (10)
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where P(z|y) = P]%’f)’). We can simplify the above equation as:

Haly= 3 Ple,y)log ) (1)

e ey P(z,y)
A basic property of the conditional entropy or equivocation is that:
H(z,y) = H(zly) + H(y) (12)

This equation can be proved as follows:

H(z|y)+ H(y ZP x,y) log +ZP log ) (13)

Because the marginal probability P(y) = Y P(z,y), we can replace P(y) in equation 13 and obtain:

H(z|y) + H(y)

ZnylogP +ZZnylogP() (14)

z,y

= ZPmy [log (<)) lgpzy)} (15)

.y

= ZP x,y)log —— ( m = H(x,y) (16)

T,y

The mutual information, or transinformation is a measure of how much information can be
obtained about one random variable by observing another. The mutual information of x relative to
y is given by:
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4.2 Kullback-Leibler Divergance and Gibb’s Inequality

The Kullback-Leibler (KL) divergence or distance, or relative entropy, is a quantity which mea-
sures the difference between two probability distributions:

KLp(a)la(e)) = | ple)tog 2 da (18)

In Bayesian statistics the KL divergence can be used as a measure of the “distance” between the
prior distribution and the posterior distribution.

There are also some interesting properties:

KL(pllg) + H(p) = H(p,q)

where

H(p,q)=E {bg } Zp Jog s

is referred to as cross entropy. The relation between mutual information and KL divergence is as
follows:

I(z;y) = KL(p(z,y)||lp(z)p(y)) (19)



The proof is as follows:

ei) = PP, 6 ) (20)
= ZP x,y) log (|3;1D(($)/) (21)
= ;;P z,y) log P(f)c y(;) (22)
= KL(P(z,y)||P(x)P(y)) (23)

Given two distributions p(z) and g(z), their KL-divergence satisfy: K L(p||q) > 0. This is also called
Gibb’s inequality. To prove Gibb’s inequality, we first need to know Jensen’s inequality: given
f(z) is a convex function (see eq. 40) and x is a random variable:

E[f(2)] = f(E[z]) (24)

In the following proof, we will use a convex function f(x) = log% and Jensen’s inequality.

KLlo) = [ p)ios? (25)
= [res o (26)
N E{logq(m)}p(w)} @)
> 1ot g 2
= log fp(x)l %dx (29)
- log%zO (30)

5 Probability Distributions
Bernoulli Distribution Given a discrete random variable x:
z€{0,1} Plzx=1)=p Plx=0)=1-p

where p is the only parameter for the Bernoulli distribution whose probability density function
(PDF) is described as the following:

flx)=p"(1—p)'~*

Beta Distribution is a continuous probability distribution with probability density function (pdf)
defined on the interval [0, 1]:

1
B(e, )

where the parameters a and § must be greater than zero and B(-) is the beta function defined by:

flzia,8) = 21— 2)” (31)

Bla,y) = /0 11— ) lar (32)



Binomial Distribution is a discrete distribution and the PDF is:
n T n—x
flaipn) = |p*(L—p) (33)

Gaussian Distribution is an extremely important proability distribution is statistics and its PDF

is: ) ) )
i) =~ exp (~goplo— ) (39)

where E(z) = p and Var(z) = o2. For multivariate Gaussian x € R%:
1, 2) = ! ! Tyt 35
f(xsp, )—WGXP —§(X—H) (x—n) (35)

where ;1 € R is the d-dimensional mean and ¥ is the d-by-d covariance matrix.

Dirichlet Distribution (after Johann Peter Gustav Lejeune Dirichlet) is a continuous multivari-
ate probability distribution. The Dirichlet distribution is the multivariate generalization of the
beta distribution (eq. 31). The PDE for the Dirichlet distribution of order K is a function of a
K-dimensional vector x = {z1,...,zx}:

| S, ) & .y
f(x;a):Dzr(al,...,aK):mng (36)

where Zfil x; =1 and I'(+) is Gamma function which defined by:

[ee]
I(a)= / t* e tdt (37)
0
Gamma function is an extension of the factorial function to the complex numbers.
Pt)=@—-1Drt—-1)

For integers:
I't)=(t—1)!

The first term of eq. 36 is a normalizing constant: which is a multi-nomial beta function expressed
in terms of the gamma function:
Hj I'(a ) B

m = B(a) (38)
Hence, eq. 36 can be re-written as:
_ 1 - aj—1
f(xa) = 3704)};[1% (39)

6 Convex Optimization
A function f(z) is convext over [a, b] if for all 21,22 € [a,b] and 0 < A < 1:
fOz1+ (1= Naz) < Af(z1) + (1= A) f(a2) (40)

If we denote ' = Azy + (1 — A\)za where 2’ is actually a value in between of [z1,22] and g(x) =
Af(z1) + (1 = A) f(z2). Fig. 1 gives a convex function where f(z') < g(z). The following are some
commonly used convex functions:



E[f(x)]
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Figure 1: left: A convex function. Right: an schematic illustration of Jensen’s inequality

e affine: y=azx+0

e exponential: y = e®*

e negative logarithm: y = —logx
e norm: y = ||z||?

o quadratic: y = az? +br +c¢

Jensen’s inequality Give a convex function.

E[f(z)] = f(E[]) (41)

This fact can be easily seen from the right-hand side figure of fig. 1. We can imagine the function is
a rope with uniform mass. The weighting center is at (E[z], E[f(z)]). Since the function is convex,
f(E[x]) is lower than E[f(z)].
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