A CONFIDENCE GROWING MODEL FOR SUPER-RESOLUTION
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ABSTRACT

Single image super-resolution (SR) aims at generating a high-
resolution (HR) image from one low-resolution (LR) input.
In this paper, we focus on single image SR by using a confi-
dence growing model based on an example-based super res-
olution approach. Compared to previous works that recon-
struct high-resolution image in a raster scan order, the new
proposed method reconstructs the patches using a new con-
fidence measure. More confident reconstructions are propa-
gated to neighboring areas by enforcing a smoothness con-
straint in selecting patches. We also adopt hierarchical clus-
tering to construct a training set to speed up processing. Ex-
perimental results demonstrate that this simple method out-
performs existing state-of-the-art algorithms on a the given
benchmark SR test images.

Index Terms— super-resolution; confidence growing;
example-based SR.

1. INTRODUCTION

The basic idea of Super-Resolution (SR) is to estimate a high
resolution (HR) image from a single or several original low
resolution (LR) images. This is an ill-posed problem since the
mapping between HR image and LR image is many-to-one
and information is lost in the HR-to-LR process. Three major
paradigms for image super-resolution were well studied: (1)
Interpolation based methods that generate HR image using
single LR image [7, 8]. (2) Reconstruction-based methods
using multiple LR images which describe the same scene to
estimate the high-resolution image [1, 6] and (3) Example-
based (also known as learning) methods that learn the LR/HR
relation using a training set of LR/HR patch pairs [4, 13, 14].

The performance of classical reconstruction-based meth-
ods may degrade without adequate low-resolution patches. It
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is also influenced by the accuracy of registration procedure.
In example-based super-resolution, LR and HR patch pairs
learned from training dataset are used to estimate the high-
resolution image. Higher SR factors have often been obtained
by repeated applications of this process. Example-based SR
has been shown to exceed the limits of classical SR. How-
ever, unlike classical SR, the high resolution details recon-
structed (hallucinated) by example-based SR are not guaran-
teed to provide the true (unknown) HR details [5]. Selected
HR patches are probably not compatible with its neighbors,
which breaks the smoothness of final reconstructed image.
Recently, some new approaches were proposed by using local
learnable kernel regression [9] and first-order approximation
of the nonlinear mapping based on self-similarity of patches
[17].

In previous work, Freeman et al. [4] employs the Markov
Random Field (MRF) to describe both the probability of
seeking correct HR patch and the compatibility between
overlapped HR patches. In [3], Freeman et al. approxi-
mates the belief propagation (BP) inference in MRF with
an example-based algorithm. It traverses all patches of the
image in a raster-scan order and keeps edges of later-operated
patch compatible with the ones of adjacent former-operated
patches. However, it is the inherent weakness of this method
that the error of one HR patch will propagate to the neighbor
patches. To handle this problem, we propose a confidence
growing model in this paper. Instead of the raster-scan order,
we firstly choosing confident LR patches as starting points
according to their uniqueness and then traverse across the
image following the 4-neighbor seed growing scheme. As
a result, with predefined overlap constraints, the propagated
error can be eased.

The rest of this paper is organized as follows. In Section
2, we describe the confidence growing model in details. In
Section 3, we explain how to learn the dictionary of LR/HR
patch pairs. Experimental results are analyzed in Section 4.
Conclusions and future work are given in Section 5.

ICIP 2014



2. CONFIDENCE GROWING MODEL

In example-based methods for super-resolution, local image
information alone may not be sufficient to predict the miss-
ing high-resolution details, spatial neighborhood information
is also crucial. For example, Freeman et al. [3, 4] used
Markov network to model such spatial relation in HR do-
main by observing LR images. Based on the Markov model,
a fast and simple one-pass, training-based super-resolution al-
gorithm is proposed for creating plausible high frequency de-
tails in zoomed images. The iteration is discarded to speed up
the process. However, the starting point will significantly in-
fluence the result of super-resolution. If there is a deviation of
patch-matching resulted from noise at the very beginning, the
later patch-matching will be disturbed. Better starting points
are necessary therefore the patch pairs could be less affected
by noise. We define these kinds of LR patches as confidence
patches.

(a) Confidence patch

(b) Normal patch

Fig. 1. Examples of a confidence patch and a normal patch.
The patch in (a) is taken from the boundary of the chip and
the patch in (b) is from the finger. Both of them are marked
in red and details are shown in red squares at bottom.

2.1. Confidence of Patch

In HR-LR matching process, it should start from the patches
with richness in information. For example, a corner, which al-
ways involves two edges, has the capability of including more
information than a normal non-interest point. As it is a corner,
information entropy will be larger than other patches. The
information loss during the down-sampling will be less than
others. Hence this leads to reduction of the error rate (e.g., see
Fig. 1). Therefore, beginning from these carefully selected
points, the probability of error spreading to other patches will
be much smaller.

Our approach is based on the observation that for LR
patches without salient texture, it is difficult to choose the
corresponding high-resolution patches. Patches with less tex-
ture information may have more low-resolution patches from
the dictionary than the ones with distinctive texture, although
retrieved ones in fact have different high resolution patterns.
It is thus difficult to reconstruct such positions with correct
HR patches. On the contrary, patches with distinctive texture
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Fig. 2. Difference between the query patch and candidate
patches. The x-axis denotes to the top 20 candidates, and the
y-axis denotes to Euclidean distance of these candidates to the
query low-resolution patch. For normal patches, the gaps of
distance of candidates are smaller than confident patches.

can retrieve correct HR patch from the dictionary with a much
higher probability.

Following this observation, we start the reconstruction
from positions whose LR patches having distinctive texture.
Then we grow them by reconstruct neighboring patches. This
result of confidence is propagated to the whole image. In this
paper, we use Kanade-Lucas-Tomasi (KLT) corner detector
[12, 15] to find confident patches. We calculate the histogram
difference between query patch and candidate patches from
training set (whose details are available in Section 4) and the
comparison results are demonstrated in Fig. 2.

2.2. Confidence Growing

The processing order will make a difference in high-resolution
results. Raster-scan order is the most basic and easiest way.
However, the noise will spread from the upper left of the
image to the bottom right side of the image. If one LR patch
gets its corresponding HR patch matching wrong, such in-
formation will lead to other wrong matching. To avoid such
problems as far as possible, we employ a growing strategy.
We begin with picking some key points and do the match-
ing process in a different order. To be precisely, we process
neighboring patches given the starting points. The patches
far from the start points will be processed much later. Such
a strategy for scanning patches is called confidence growing.
For example, Fig. 3 shows an illustration of how the patches
will be chosen based on some initial confident patches.
Following the method in [3], we define the overlap con-
straint as minimizing the difference of the overlap between
two neighbored patches. Overlap constraint helps to deter-
mine the high-resolution patch from a set of candidates. In
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Fig. 3. An illustration of the confidence growing model on
the Maddie image. We show how the region expended from
image in the bottom layer to the upper layer.

our method, after retrieve several low-resolution patches from
the dictionary, we calculate the difference of these candidates
from the query patch and choose the most compatible patch
from them. As a result, former-processed patch can help
choose right later-processed patch. The overlap constraint is
important to guarantee smoothness of reconstructed HR im-
ages. In [4], overlap constraint is regarded as a compatibility
matrix defined by Equation (1).

- 2
d;j(ab) ) n

bunlisd) = exp (-4

where d;;(a,b) is the sum of squared differences between
patch candidates a and b in their overlap regions at nodes %
and j (the details of Markov model is introduced in [4]). o is
a predefined noise parameter.

3. HIERARCHICAL CLUSTERING

For example-based super-resolution, we need a database of
LR-HR pairs for training. In this paper, we use the images
from Berkeley Segmentation Database, by which we nor-
malize every patch so that each pair in training represent the
patches with same contrast. For each patch pair, we calculate
the mean of the pixels of a patch and use L2 normalization
(Equation 2).

Y=y
ly =9l

Due to the redundancy among normalized patches, i.e.,
patch pairs in fact have similar texture in both low resolution
and high resolution, we use the center patch pairs to represent
a set of similar patches pairs by hierarchical clustering. Each
patch pair vector C; is defined as Equation 3.

y= @
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Ci=L; + H; 3

where L; denotes to low-resolution patch vector and H; de-
notes to high-resolution patch vector.

By hierarchical clustering, each time two pairs (C; , C})
are gathered to one cluster. We search for the min Euclidean
distance, which also used to retrieve the nearest neighbors
in matching process, between two cluster centroid/elements,
which means the corresponding two patch pairs are most sim-
ilar with each other in Euclidean space. The nearest two
patches will be merged into one. Then the distance from new
merged cluster to other cluster/patches, will be calculated, and
the merge process repeat. When the nearest distance between
clusters/patches is further than the threshold we set, the merge
process stops.

4. EXPERIMENTAL STUDIES

In this section, we describe the experiments in details and
compare our method to several other state-of-the-art super-
resolution algorithms.

4.1. Experimental Setting

We extract 100,000 HR-LR patches from the Berkeley Im-
age Segmentation Database [10] to build the training dataset.
Specifically, we collect LR patches with size 3 x 3 and HR
patches with size 4 x 4.

The corresponding lower spatial scale images are gener-
ated by blurring and downsampling the high-resolution im-
ages. Then we obtain some standard test images which are
accompanied with ground truth from websites. As the con-
ventional setting, we run most experiments with magnifica-
tion factor 4. And one can run the algorithm recursively if
results of greater magnification factor are required.

4.2. Experimental Results

We compare the new model to several other classical meth-
ods on the given standard training dataset. First, we test on
the Infant image with magnification factor 4. The methods for
comparisons are Freeman’s Markov Random Field (MRF) su-
per resolution method [4], Fattal’s imposed statistics method
[2] and Shan’s fast method [11]. From Fig. 4, it is clear to
see that, method in [4] produces some unrealistic textures.
Though methods in [2] and [11] obtains more pleasing de-
tails, but the resolution is still lower than our method. The
confidence growing model is obviously with clearer edges in
detail.

Then we increase the magnification factor to 8 and test
it on the Statue image. We have done one more comparison
experiment with the Genuine Fractals TM  which is a lead-
ing commercial plug-in for the Adobe Photoshop. Results are
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(a) Freeman et al. [4] (b) Fattal et al.[2]

(c) Shan et al. [11] (d) Confidence Growing

Fig. 4. Experimental results of the infant image.

(a) Genuine Fractals (b) Fattal et al. [2]

» B .

(c) Shan et al.[11] (d) Confidence Growing

Fig. 5. Experimental results on the statue image.
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shown in Fig. 5. We can find that, in our result, the contour
of the statue’s mouth is sharper than other methods.

To quantitatively evaluate the performance of our method
and others, we adopt 3 conventional measures for super reso-
lution: root mean square error (RMSE), peak signal to noise
ratio (PSNR) and structure similarity (SSIM) [16]. Different
measures of the infant image is listed in Table 1. From this
table, we can easily see that our method achieve the smallest
RMSE, the greatest PSNR and the greatest SSIM, thus out-
performs other methods fore-mentioned.

We also compare the computational time of our model to
other state-of-the art methods based on three benchmark test
images. We run all these algorithms on the same machine. In
order to make a fair comparison, we ignore training time and
only consider the time of test procedure. The experimental
results are shown in Table 2.

Method PSNR RMSE | SSIM
Freeman e al. [4] | 22.0480 | 20.1437 | 0.5311
Fattal et al. [2] 22.0685 | 20.0962 | 0.5829
Shan et al.[11] 24.3879 | 15.3870 | 0.6494
Our Method 24.7575 | 14.7457 | 0.6696

Table 1. Experimental results in different measures on the
infant image

Picture | Our method | MRF Sparse
Infant 22.32s 92.45s | 213.50s
Statue 22.34s 89.34s | 543.22s

Maddie 22.23s 57.07s | 1009.33s

Table 2. Computational complexity comparisons on given
three images.

5. CONCLUSIONS AND FUTURE WORK

In this paper, based on the previous work of Freeman et al.
[4], we propose a confidence growing model for single im-
age super-resolution. We developed a new way of scanning
LR-HR patch matchings to increase the model performance.
Our model inherits the property of fast speed from example-
based methods and improves the reconstructed ability of high
resolution. Experimental results on a few benchmark test im-
ages show that the new proposed model outperforms a few
classical models and with good efficiency.

Future work will focus on generalizing the algorithm to
deal with less and compact patch dictionary without losing
much accuracy. We will also improve the efficiency of the
model to make it more applicable, even in real-time applica-
tions.
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