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Abstract—A musical part is a strand of music played by
an individual instrument within a larger music work, main
melody is a single musical part which consists of the most
significant melodic elements of multi-part musical score. This
part is typically related to dissonance between musical parts
and musical instruments. In this paper, we propose a novel
model for extracting the main melody from multi-part musical
scores. This model is referred to as the TuneRank model that
has the conceptually similar idea of the PageRank model. If
each musical note can be considered like a web page in the
Internet, and the dissonance value between two notes is like
the quantity of links between two web pages. The TuneRank
(rank of becoming main melody) of each note is calculated
using Markov transition probability. This model is tested on
the ECPK4 database. By comparing to the previous work, we
find that this note-based model is more effective for processing
scores containing main melody in multiple parts. Also, the
accuracy does not change with the increase of the number of
parts. In general, this model can be used for extracting the
single-part main melody of digital musical scores.

Keywords-TuneRank; PageRank; Melody extraction; Musi-
cal score.

I. INTRODUCTION

A musical part is a strand or melody of music played by

an individual instrument (or group of identical instruments)

within a larger music work. Main melody is a single part of

music which consists of the most melodic elements of multi-

part music. With the development of information technology,

the digital musical score formats (like MusicXML, MSCZ

and etc.) are becoming more common for composing music

and sharing music on the Internet. However, it is always

difficult for users to search musical score files. One of the

most efficient approaches is Query by Humming (QbH) [1].

However, The QbH algorithm can only match one input

humming audio track with a single part of music melody,

while the digital musical score files usually contain multiple

parts. In order to use the QbH method to search digital

musical score files, we need to extract the main melody part

from multi-part digital musical score file in order to build

the melodic library.

As far as we concerned, computing-based main melody

extraction from multi-part musical files has not been re-

ported in any literatures. But in a similar field, the study

of extracting main melody from MIDI files are available

in literatures for years [2–5]. Ozcan et al. [2] eliminated

MIDI channels those do not contain melodic information

depending on pitch histogram. Shih et al. [3] proposes a

modified Lempel-Ziv model to extract MIDI main melody

by using a dictionary based approach for extracting repetitive

patterns in music. Zhao and Wu [4] use the melodic feature

of each parts (including left and right channel balance value,

average loudness, rest time and etc.) to extract main melody.

Zhang [5] uses overtone significant degree detecting method

to extract main melody of .WAV files and transform them

into a MIDI library.

However, previous research are mainly based on proba-

bility and statistics, but have not consider much from music

theory criterions, like consonance and dissonance between

different intervals. Another problem is that the existing

research often assumes that there exists only one part main

melody. But in digital musical score files, the main melody

often exists in different parts of the score.

In this paper, we proposed a model for main melody

extraction from digital musical score files. With a similar

idea of PageRank model in Internet search, each music note

is regarded as a web page in the Internet, and extract main

melody by calculating TuneRank (rank of becoming main

melody) of each note. We deal with the MusicXML format,

which is well used in music composing and musical score

storing. The remaining paper is consisted by the following

sections. Section II introduces the basic knowledge of music

theory. Section III introduces the TuneRank model. And

Section IV gives test results of TuneRank model under

ECPK4 database. Conclusions are given in Section V.

II. FUNDAMENTAL MUSIC KNOWLEDGE

In music theory, the Twelve-Tone Equal Temperament

(12-TET)[12] divides an octave into 12 different notes, there

can be up to 11 intervals (semitones) between any two

notes. Comparing to the consonance, the dissonance is an

interval between two notes which sound harsh or unpleasant

to most people. In music theory, 11 intervals between each

two different notes can be divided into 6 consonance and 5
dissonance matching between notes. Consonance/dissonance

matching to the note C are shown in Fig. 1.

In general, consonance are usually used between accom-

paniment melodies, and the main melody usually changes

more frequently than accompaniment melodies. As a result,
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Figure 1. Types of intervals in Twelve-Tone Equal Temperament

the dissonances appears more frequently between main

melody and accompaniment melody than between accom-

paniment melodies themselves. An example is given in

Fig. 2, where the first part (trumpet) is the main melody

and other three parts (flute, saxophone and trombone) are

accompaniment melodies.

Figure 2. An example of consonances and dissonances in multi-part
musical score

A. Dissonance Values
In digital musical score files, we can acquire exact pitch

values of each notes. In the Twelve-Tone Equal Temper-

ament (12-TET)1 system, there exists 11 intervals between

any two notes. As a result, in order to identify the dissonance

degree between each two different notes, we need to acquire

dissonance values. Chen and Lu [6] proposed a model of

measuring dissonance values in each interval. We use I to

represent the dissonance value of each interval in Twelve-

Tone Equal Temperament. The normalized I as shown in

Table I.

B. Weights of Instruments
The musical instrument weight represents the saliency

of a type of instrument in the orchestra. To determine

1An equal temperament is a musical temperament, or a system of tuning,
in which every pair of adjacent notes has an identical frequency ratio. As
pitch is perceived roughly as the logarithm of frequency, this means that
the perceived “distance” from every note to its nearest neighbor is the same
for every note in the system [12].

Table I
DISSONANCE VALUES IN DIFFERENT INTERVALS

Interval
(in semitones)

0 1 2 3 4 5

Dissonsnce Value 0.1 0.9 0.67 0.65 0.58 0.43

Interval
(in semitones)

6 7 8 9 10 11

Dissonsnce Value 0.65 0.34 0.62 0.56 0.69 0.81

this value, we considered the Average Measured Equivalent

Continuous Sound Level (Leq) of each instrument, Moore

[7] measured Leq of different instruments. By normalizing

Leq , the musical instrument weights (W ) are shown in Table

II based on [7].

Table II
INSTRUMENTS WEIGHTS (NORMALIZED Leq ) OF EACH INSTRUMENT

Instrument Violin Viola Cello Bass Flute
Instrument

weight (W )
0.507 0.700 0.497 0.06 0.363

Instrument Oboe Clarinet Bassoon French Horn Trumpet
Instrument

weight (W )
0.543 0.737 0.577 0.867 0.883

III. TUNERANK MODEL

A. Three Criterions of Main Melody

Based on the fundamental music knowledge which has

been introduced in section II, we proposed three basic

criterions to define the main melody.

1) Dissonance value (Longitudinal TuneRank): If a note

has a larger sum of dissonance values than other notes

at the same time point (column), which means this

note sounds more dominant than others, so this note

should have a high probability of becoming the main

melody.

2) Distance between important notes (Horizontal TuneR-

ank): A tune is an ordered set of notes, a note has a

higher probability of becoming the main melody, if it

is close to notes with larger probabilities of being the

main melody.

3) Musical instrument weight (W): If a part is performed

by a more important instrument, all the notes in this

part will have higher probabilities to become the main

melody.

B. Mathematical Representation of Musical Scores

A music score can be transformed into a description

matrix S (E.g., Fig.3). In this matrix, elements in a row

represent parts of the score, and the numbers of columns

are the length of time. Each column contains the notes at a

certain time point, the sampling interval between each two

columns is 0.1 second.
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Figure 3. A 5-parts score can be represented by a description matrix S

In matrix S, according to the Twelve-Tone Equal Tem-

perament, each note is represented by an integer between

1 and 12. And the last column of the matrix contains the

instrument ID.
In order to acquire dissonance value between each two

notes, we firstly need to construct a matrix E including

dissonance values in Table. I. E.g.:

[ 0.1 0.9 0.67 0.65 · · · 0.62 0.56 0.69 0.81 ] (1)

Assuming note A = S(a, j) and note N = S(n, j) in a

musical score S, the longitudinal dissonance value D(a, n)
between these two notes can be calculated by the following:

D(a, n) = E(1, |a− n|+ 1) (2)

C. Generating Transition Probability Matrix and Calculat-
ing TuneRank

For a note A = S(a, j) in an M-parts musical score, the

sum of longitudinal dissonance of note A, DL(A) depends

on impacts from the other M − 1 notes at the same time

(i.e., the column j):

DL(A) =

a−1∑

n=1

(D(a, n) +W (N)× α) +

M∑

n=a+1

(D(a, n) +W (N)× α)

(3)

While D(a, n) is the dissonance value between note A =
S(a, j) and note N = S(n, j) calculated by Equation 2, and

W (N) is the instrument weight of the part which contains

note N , and the parameter α controls the influence of W (N)
on the result. The sum of longitudinal dissonance DL(A) is

the sum of dissonance values between note A and the other

M − 1 notes (notes in same time point j except note A
itself).

After calculating the sum of longitudinal dissonance of

each notes, we start the process of transition probabilities.

In this process, note A in an M-parts musical score transfers

its probability of becoming main melody of the rest M − 1
notes in the same time point. The longitudinal transition

probability PL(a, n) between note A and N is based on

dissonance values calculated by each note.

PL(a, n) =
D(a, n) +W (N)× α

DL(A)
(4)

Where PL(a, n) is the transition probability from note

A = S(a, j) to note N = S(n, j) , D(a, n) refers to the

dissonance value between note A and N , and DL(A) repre-

sents the longitudinal dissonance value of note A. W (N) is

the instrument weight of the part which contains the note N .

For all the notes in the first column (j = 1) in an M-parts

musical score, eventually we can build up a longitudinal

transition probability matrix B, where B(a, n) = PL(a, n)
as shown below.

B =

⎡
⎢⎢⎣

0 PL(1, 2) · · · PL(1,M)

PL(2, 1) 0
. . .

.

.

.

.

.

.
. . . 0 PL(M − 1,M)

PL(M, 1) · · · PL(M,M − 1) 0

⎤
⎥⎥⎦

(5)

We can calculate the longitudinal TuneRank value of each

note by using a Markov chain transition probability process.

Xt = BXt−1 = Xt+1e (6)

While e is a column vector with M entries of 1. According

to the Perron-Frobenius theorem, when B is an irreducible

stochastic matrix, the largest eigenvector v with positive

entries will determine longitudinal TuneRank value of each

note.

Bv = v (7)

When t gets large enough, Xt will approach v. In actual

operation, we use the vector norm of the differences between

Xt and Xt−1 to determine convergence.

‖Xt −Xt−1‖ ≤ 0.001 (8)

While each entries in vector Xt is the longitudinal TuneR-

ank (RL) of each notes in certain time point (column). The

RL of note A = S(a, j) is as shown below.

RL(A) = Xt(a, 1) (9)

After calculating longitudinal TuneRank (RL), each note

affects its vicinity notes in the same part (row i) based on its

RL. The horizontal impact EH(a, b) from note A = S(i, a)
to note B = S(i, b) is decreasing by the distance (L)

between note A and B:

L = |a− b|
EH(a, b) = βLRL(A)

(10)

While β is the horizontal attenuation coefficient. We also

introduce γ by controlling the quantity of vicinity notes for

each note could have an effect on.

Once β and γ are defined, we can build up a horizontal-

impact matrix C where C(b, a) = EH(a, b).For all the notes

in the part of matrix S, the horizontal-impact matrix of notes

in each row of matrix S can be shown below. In this model,

each note has influence on 2γ vicinity notes, including γ
notes forward and γ notes backward.
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In order to avoid the first γ notes which cannot receive

sufficient amount of influence, we firstly add γ time points

of pauses (columns with all entries of 0) to the leftmost of

matrix S. The dimension (LC) of matrix C equals to the

length (LS) of matrix S plus γ : LC = LS + γ.

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · 0 · · ·

· · ·
.
.
. · · ·

· · · 0 · · ·
· · · EH(S(i, n− γ), S(i, n)) · · ·

· · ·
.
.
. · · ·

· · · EH(S(i, n− 1), S(i, n)) · · ·
· · · 0 · · ·
· · · EH(S(i, n + 1), S(i, n)) · · ·

· · ·
.
.
. · · ·

· · · EH(S(i, n + γ), S(i, n)) · · ·
· · · 0 · · ·

· · ·
.
.
. · · ·

· · · 0 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Then we firstly normalize the sum of each rows of matrix

C into 1. And then normalize the sum of each column of

matrix C into 1.

After normalization we can get a horizontal transition

probability LC-dimensions matrix C1. Where the transition

probability from a fundamental note to a target note is not

only related to the absolute size of longitudinal TuneRank

values (RL) of target note, but also related to the relative RL

size between the fundamental note and other fundamental

notes which have transition probabilities on the same target

note.

According to the Perron-Frobenius theorem,the largest

eigenvector v of matrix C1 with positive entries will de-

termine the horizontal TuneRank of the tunes.

Just as similar as the transition probability process in

Equation.6 ,in this stage, we use the longitudinal TuneRank

Xt vector calculated in (6) as each note’s initial probability

of becoming the main melody. The largest eigenvector Xk

which contains the horizontal TuneRank (RH) of each notes.

Xk = C1X
k−1 = C1

k+1Xt (12)

When each entries in vector Xk becomes the horizontal

TuneRank (RH) of each notes in certain part (row), the RH

of note A = S(i, a) is as shown below.

RH(A) = Xk(a, 1) (13)

We calculate the final TuneRank (RF ) of each note as

a result by multiplying longitudinal TuneRank (RL) and

horizontal TuneRank (RH).

RF = RL ×RH (14)

Finally, We consider the note which has a higher TuneR-

ank than the others in the same time point (column) as the

main melody.

In this model, we assumed three parameters: α, β, and γ.

α controls the influence conducting by musical instrument

weights W (N) towards the longitudinal TuneRank. β is

the horizontal attenuation coefficient, which identifies the

intension exerted on horizontal vicinity notes. γ refers

to the maximum horizontal affect length determining the

quality of horizontal vicinity notes that a note could be

influenced on.

IV. EXPERIMENTAL STUDIES

To verify the performance of the new proposed model,

we firstly build up a test set named ECPK42 (the École

Centrale de Pékin, ECPK musical score data set with 4

types), consists of 40 musical score files in 4 different

quantities of parts 5, 6, 7 and 8 where each of them contains

10 score files. All the musical scores in this test set are in

MusicXML format having the same length of 9.9 seconds

i.e. 99 time points.

In order to facilitate the statistical accuracy, we build the

ECPK4 database according to the following 2 standards: (1)

Each score has, and only has one clear main melody part at

each time point. (2) There is no part in musical score that

pauses from the beginning to the end.

The data set ECPK4 contains 3960 time points i.e.

40 scores with 99 time points, in terms of 4 different

types: 5-parts, 6-parts, 7-parts and 8-part of each contains

990 time points. We calculate the accuracy (the quantity

of time points whose main melody has been extracted

correctly divided by the sum of time points) to evaluate the

performance of this model. In order to study the influence

of the three parameters. We tested accuracies in different

numerical value of parameter α, β and γ the results are

shown in tables III to V:

Table III
ACCURACY IN DIFFERENT SIZES OF PARAMETER α

Parameter α 10% 20% 30% 40 % 50%
5 parts 39.19% 47.88% 52.32% 55.25% 57.88%
6 parts 53.73% 56.87% 56.46% 56.97% 57.47%
7 parts 63.83% 61.61% 60.71% 60.10% 58.89%
8 parts 50.20% 60.71% 65.76% 67.98% 66.87%

Average
accuracy

51.74% 56.77% 58.81% 60.08% 60.28%

Parameter α 60% 70% 80% 90% 100%
5 parts 59.19% 61.41% 63.54% 64.44% 64.95%
6 parts 57.37% 55.65% 55.86% 56.36% 56.36%
7 parts 56.97% 54.75% 53.94% 52.63% 51.52%
8 parts 66.06% 64.65% 63.64% 62.42% 61.41%

Average
accuracy

59.90% 59.12% 59.24% 58.96% 58.56%

2http://icmll.buaa.edu.cn/members/Hanqing Zhao/
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Table IV
ACCURACY IN DIFFERENT SIZES OF HORIZONTAL AFFECT WEIGHT β

Parameter β 10% 20% 30% 40 % 50%
5 parts 58.99% 57.88% 56.67% 57.17% 56.46%
6 parts 58.59% 57.78% 54.55% 55.56% 55.56%
7 parts 53.94% 53.54% 53.23% 54.24% 54.95%
8 parts 57.47% 60.00% 61.62% 61.62% 63.84%

Average
accuracy

57.25% 57.30% 56.52% 57.15 % 57.71%

Parameter β 60% 70% 80% 90% 100%
5 parts 55.66% 55.76% 57.88% 57.58% 55.86%
6 parts 55.66% 56.87% 57.47% 57.58% 57.58%
7 parts 56.67% 58.28% 58.89% 58.18% 57.47%
8 parts 65.35% 66.46% 66.87% 65.96% 65.45%

Average
accuracy

58.33% 59.34% 60.28% 59.82% 59.09%

Table V
ACCURACY IN DIFFERENT SIZES OF HORIZONTAL AFFECT LENGTH γ

Parameter γ 2 3 4 5 6
5 parts 56.67% 56.87% 56.26% 56.06% 56.46%
6 parts 56.97% 56.26% 55.96% 57.17% 57.47%
7 parts 54.65% 55.15% 56.57% 57.88% 58.48%
8 parts 61.52% 62.42% 64.14% 64.34% 65.45%

Average
accuracy

57.45% 57.68% 58.23% 58.86% 59.47%

Parameter γ 7 8 9 10 11
5 parts 57.47% 57.47% 57.89% 58.59% 58.99%
6 parts 57.88% 57.78% 57.47% 56.87% 56.87%
7 parts 58.79% 59.09% 58.89% 58.48% 57.98%
8 parts 66.57% 66.77% 66.87% 66.77% 67.17%

Average
accuracy

60.18% 60.278% 60.28% 60.18% 60.25%

By comparing the above results, we can conclude that

when three parameters settled as α = 0.5, β = 0.9,

γ = 9 the model reaches its highest accuracy of 60.28% in

main melody extraction. Under this condition, the melody in

scores with 5 parts can be extracted at the rate 57.89%; the

melody in scores with 6 parts can be extracted at the rate

57.47%; the melody in scores with 7 parts can be extracted

at the rate 58.89%; and the melody in scores with 8 parts

can be extracted at the rate 66.87%.

V. CONCLUSION

In this paper, we have presented a simple but novel

model for main melody extraction from multi-part musical

scores. Each piece of music can be represented into score

description matrix. We use the dissonance value, distance

between important notes, and music instrument weights as

criterions. Following the idea of PageRank, we use transition

probability to calculate the TuneRank of each note. We

consider the note with a higher TuneRank than others as

the main melody at a time. By using such a note-based

function, this model can deal with scores that a main melody

exists in different parts of the score in different time. The

performance of the model has been evaluated on the dataset

ECPK4. The experimental results show that the accuracy is

not decreasing with the increasing of number of parts. The

general performance is comparable or even better than some

classical methods [8].
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