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ABSTRACT

To diagnose breast cancer (BCa), the number of mitotic cell-
s present in tissue sections is an important parameter to ex-
amine and grade breast biopsy specimen. The differentia-
tion of mitotic from non-mitotic cells in breast histopatho-
logical images is a crucial step for automatical mitosis de-
tection. This work aims at improving the accuracy of mito-
sis classification by characterizing objects of interest (tissue
cells) in wavelet based multi-resolution representations that
better capture the statistical features having mitosis discrimi-
nation. A dual-tree complex wavelet transform (DT-CWT) is
performed to decompose the image patches into multi-scale
forms. Five commonly-used statistical features are extracted
on each wavelet subband. Since both mitotic and non-mitotic
cells appear as small objects with a large variety of shapes in
the images, characterization of mitosis is a challenging prob-
lem. The inter-scale dependencies of wavelet coefficients al-
low extraction of important texture features within the cell-
s that are more likely to appear at all different scales. The
wavelet-based statistical features were evaluated on a dataset
containing 327 mitotic and 406 non-mitotic cells via a support
vector machine classifier in iterative cross-validation. The
quantitative results showed that our DT-CWT based approach
achieved superior classification performance with the accura-
cy of 87.94%, sensitivity of 86.80%, specificity of 89.89%,
and the area under the curve (AUC) value of 0.94.

Index Terms— mitosis, wavelet transform, multi-resolution
representation, breast cancer histopathology.

1. INTRODUCTION

According to the World Health Organization (WHO), breast
cancer (BCa) is the second most lethal cancer diagnosed in
women [1]. To diagnose breast cancer in histopathology,
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Fig. 1. An example of breast cancer histopathological im-
age containing mitotic and non-mitotic cells. Two magnified
image patches show that mitotic and non-mitotic cells may
exhibit similar color and shape.

biopsy is performed and the stained histology slides are ob-
served under microscope and graded by pathologists. Based
on the Nottingham Grading System [2], a well-known inter-
national grading system for breast cancer recommended by
the WHO, mitotic count is one of the main parameters in
breast cancer grading as it gives an evaluation of the prolif-
eration and aggressiveness of the tumor. Manual counting of
mitosis is a tedious process and often subject to sampling bias
due to massive histological images. Moreover, previous s-
tudies revealed that this process subject to considerable inter-
and intra-reader variation is up to 20% between central and
institutional reviewers in tumor prognosis [3].

With the recent advent of whole slide digital scanners and
advances in computational power, it is now possible to use
digitized histopathological images and computer-aided im-
age analysis to facilitate BCa diagnosis and prognosis [4].
In histopathological image analysis, mitosis classification in
discriminating between mitotic and non-mitotic cells is a d-
ifficult task due to the various and irregular shapes of mitot-
ic cells under four main phases (i.e., prophase, metaphase,
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anaphase, and telophase) [5]. It is also observed that non-
mitotic cells may exhibit similar color and shape to mitotic
cells as shown in Fig.1.

Recently, a few computer-aided diagnosis techniques
have been developed to automatically detect and classify mi-
tosis using different features [6, 7]. For example, Sommer
et al. [8] employed intensity, shape (e.g., circularity), and
texture features (e.g., haralick, statistical geometric features)
to perform a mitosis classification on a pixel basis. Tashk
et al. [9] introduced an automatic mitosis detection method
using completed local binary patterns based on a pixel-level
classification. Although these pixel-wise texture features
have been proved to be effective imaging attributes for mito-
sis detection, the discrimination power of these features can
be degraded by artifacts present in the image due to slide
preparation and acquisition.

In this paper, we present a wavelet based approach to
distinguish mitotic from non-mitotic cells in breast cancer
histopathology. The objects of interest containing tissue cell-
s are decomposed into multi-resolution representations via a
dual-tree complex wavelet transform (DT-CWT), which pro-
vides near shift invariance and good directional selectivity
compared to the standard wavelet transform [10]. There is
an inter-scale dependency, most notable between a wavelet
coefficient at a coarse level and the four coefficients at the
previous adjacent level that correspond to the same location
in the image [11, 12]. This property allows extraction of im-
portant textural features that are more likely to appear at all
different decomposition levels. This is particularly useful for
characterizing small objects, such as mitotic and non-mitotic
cells present in histopathological images. Five widely-used s-
tatistical features are then computed on each wavelet subband
to better characterize tissue cells at multiple scales and orien-
tations having mitosis discrimination from non-mitotic cell-
s. These extracted statistical features are evaluated through a
support vector machine (SVM) classifier on a cell basis. The
flowchart of the presented method is illustrated in Fig.2.

The rest of the paper is organized as follows. Section 2
describes the detailed methods. The experimental results and
discussion are presented in Section 3. Finally, the concluding
remarks are drawn in Section 4.

2. METHODS

2.1. Data Description

The DT-CWT based approach is evaluated on the MITOS
database1, which is provided by the International Conference
for Pattern Recognition 2012 contest on Mitosis Detection in
Breast Cancer Histological Images. It contains a set of 5
breast cancer biopsy slides that stained by hematoxylin and
eosin (H&E) and examined under a 40× magnification lens.
In each slide, the pathologists selected 10 images as a size of

1MITOS database is available at:http://ipal.cnrs.fr/ICPR2012.
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Fig. 2. The flowchart illustrating that histopathological im-
ages containing mitotic and non-mitotic cells are decomposed
into multi-resolution representations via DT-CWT. The statis-
tical features are extracted on wavelet subbands to well char-
acterize tissue cells in the wavelet domain and evaluated by
the SVM classifier.

512 × 512µm2 termed as high power fields (HPF). For each
HPF image as shown in Fig.1, two experienced pathologists
manually annotated mitosis as the ground truth.

2.2. Image Preprocessing

To generate mitosis and non-mitosis dataset, 327 mitotic and
406 non-mitotic cells are segmented using a semi-automatic
segmentation algorithm, named distance regularized level set
evolution (DRLSE) based method [13]. In the segmentation
model, a general variational level set formulation with a dis-
tance regularization term and an external energy term drives
the motion of the zero level contour toward desired location-
s. The DRLSE segmentation method requires initialization
for the zero level set function, which is defined based on the
ground truth for mitotic cells and the manual annotation from
a pathologist for non-mitotic cells, respectively.

Before performing feature extraction, the segmented cell
images are preprocessed via a contrast enhancement method
to improve the image quality. In addition, to reduce the edge
effect between cell boundary and background in the wavelet
transform, the background of image patch is assigned a dom-
inant color of tissue cell stained by H&E.

2.3. Feature Extraction

2.3.1. Multi-resolution Representations via DT-CWT

The dual-tree complex wavelet transform [10] has been
proved to have several advantages over the traditional wavelet
transform in terms of shift invariance and directional selec-
tivity. The segmented cell images can be decomposed into
multi-resolution representations in different spatial scales and
orientations. In this work, we adopt a 2-level DT-CWT with
6 orientations of [±15◦,±45◦,±75◦].

For an input image with a size of m × n, we obtain a set
of real and imaginary coefficients at different decomposition
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Fig. 3. Two examples of DT-CWT representations with 2 de-
composition levels and 6 orientations for a mitotic cell and a
non-mitotic cell. The wavelet subband images revealed that
important texture features appearing in coarse level are more
likely present in the adjacent level. This inter-scale dependen-
cies allow better extraction of salient features having discrim-
ination capability in distinguishing mitotic and non-mitotic
cells.

levels and orientations. As shown in Fig.2, the subband image
of level l has a size of m/2l−1 × n/2l−1. For each level, the
DT-CWT produces 6 wavelet subband images reflecting the
high frequency response on the corresponding 6 orientations.

Fig.3 shows two examples of DT-CWT representations
for a mitotic cell and a non-mitotic cell, respectively. For a
better visualization, the subband images for the level 2 have
been enlarged to the same size as the subband images of level
1. The mitotic and non-mitotic cells exhibit distinctive pat-
terns of frequency response in wavelets. Moreover, the figures
revealed that important texture features appearing in coarse
level are more likely present in the adjacent level, which is re-
ferred to as the inter-scale dependencies. This property allows
better extraction of salient features having discrimination ca-
pability in distinguishing mitotic and non-mitotic cells.

2.3.2. Statistical Features

In this work, we extract five popular statistical features,
including mean (F1), median (F2), variance (F3), ener-
gy (F4), and entropy (F5), on each wavelet subband Wl,θ,
l ∈ {1, ..., L}, θ ∈ {±15◦,±45◦,±75◦}. The energy and
entropy are computed as:

F4 =

m∑
i=1

n∑
j=1

g2(i, j) (1)

F5 =
m∑
i=1

n∑
j=1

g(i, j)× log[g(i, j)] (2)

where g(i, j) ∈ Wl,θ represents the wavelet coefficient at lo-
cation (i, j) in wavelet subband image with a size of m × n.

For each wavelet subband, the features are calculated for real
and imaginary part of coefficients, respectively. All the fea-
tures across wavelet subbands are combined to form a feature
vector F to characterize mitotic and non-mitotic cells. Before
performing a cell level classification, we rescale the range of
features in order to make the features independent to each oth-
er. The feature vector is rescaled to the range of [0, 1]. The ob-
jective of this work is to investigate the potential application
of multi-resolution approach to improve the accuracy of mi-
tosis classification in breast cancer histopathology. Thus, we
only consider five commonly used statistical features. Other
statistical features, such as second or higher order statistics,
can also be included in this framework.

2.3.3. SVM-based Classification via Cross-validation

Support vector machines, a well-known classifier, is applied
to evaluate the performance of the DT-CWT based method.
In SVM, kernel functions are used to map the input data in-
to a higher dimension space where the data are supposed to
have a better distribution, and then an optimal separating hy-
perplane is chosen. Here we utilize the radial kernel and tune
the parameters to yield the best classification results.

The mitotic and non-mitotic datasets are equally parti-
tioned into a training dataset Ztra and a testing dataset Ztes

containing both mitotic and non-mitotic cells without overlap-
ping between Ztra and Ztes. An iterative 2-fold cross valida-
tion scheme is utilized to train a SVM classifier and evaluate
the performance of classification using the feature set F .

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Experimental Design

In the SVM classification, the cross-validation process was
repeated 5000 trials to reduce random errors. The classifica-
tion performance was quantitatively measured by the classi-
fication accuracy (AC), sensitivity (SN), and specificity (SP).
In addition, a receive operating characteristics (ROC) analysis
was utilized to evaluate the performance of the SVM classi-
fier. When using normalized units, the area under the curve
(AUC) was calculated to measure the wavelet-based features’
ability in distinguishing between mitotic and non-mitotic cell-
s. The associated mean µ and standard deviation σ were com-
puted for each metric.

3.2. Classification Results

Table 1 lists the SVM classification results measured by AC,
SN, SP, and AUC. To evaluate the effect of DT-CWT in the
classification performance, we compared the wavelet-based
statistical features to the the same features directly computed
on the image intensities. The ROC curves for these two meth-
ods are illustrated in Fig.4. To further evaluate the classifica-
tion performance, we compared the DT-CWT based method
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Table 1. The classification results (µ±σ) measured by classi-
fication accuracy (AC), sensitivity (SN), specificity (SP), and
the area under the curve (AUC). The comparison results sug-
gested that the DT-CWT based statistical features are able to
better distinguish texture patterns between mitotic and non-
mitotic cells compared to the same features computed on im-
age intensities.

Measure With DT-CWT Without DT-CWT
AC 87.94%± 1.09% 83.08%± 3.59%
SN 86.80%± 4.78% 69.47%± 4.26%
SP 89.89%± 1.42% 87.74%± 1.96%

AUC 0.94 ± 0.02 0.83± 0.01

Table 2. Comparison between methods.
Measure DT-CWT XICA[14] HLW[8] SMOTE[5]

AUC 0.94 0.84 0.91 0.74

to the other three approaches using the same MITOS dataset.
The first approach [14] utilized the eXclusive independen-
t component analysis (XICA), an extension of a generic I-
CA, to automatically detect mitosis based on the components
of differences between two classes of positive and negative
patterns. The second approach [8] employed a hierarchical
learning workflow (HLW) in conjunction with SVM to dis-
tinguish between mitotic and non-mitotic cells using object
shape and texture features. The third approach [5] combined
statistical and morphological features extracted from selected
multiple color channels and applied a synthetic minority over-
sampling technique (SMOTE) [15] to reduce mitosis classifi-
cation bias. The comparison results using the AUC measure
are listed in Table 2.

The quantitative results showed that the DT-CWT based
method achieved better classification performance in distin-
guishing between mitotic and non-mitotic cells compared to
the the same features computed on the image intensities. Ow-
ing to the irregular shape and various texture of mitosis in
different phases, a DT-CWT based approach to analyzing mi-
totic and non-mitotic images is able to capture the important
texture features and architectural arrangement of individual
histological structures (glands and nuclei) present in differ-
ent resolution levels and orientations. Further, the inter-scale
dependencies between wavelet subbands allow extraction of
discriminative features of mitosis appearing at all resolution
levels.

The experiments were performed in the Matlab R2031a
platform using an Intel Duo E7500 2.94GHz machine with a
4GB RAM. The average running time per cell is 0.046 and
0.051 second(s) for feature extraction and classification, re-
spectively.

ROC curves

Fig. 4. ROC curves illustrating the comparison of classifica-
tion performance using the wavelet-based statistical features
and the same features computed on image intensities.

4. CONCLUDING REMARKS

We presented a multi-resolution based approach to discrim-
inate mitotic from non-mitotic cells using breast cancer
histopathological images in a complex wavelet domain. S-
ince mitotic cells have different shape and texture for each
main evolution phase, there is no simple way to characterize
mitosis based on shape and pixel intensities. The property of
inter-scale dependencies across wavelet subbands allows to
capture the discriminative features that appear at both coarse
level and previous adjacent level. The statistical features
extracted from wavelet coefficients at multiple scales and
orientations are able to capture the salient information within
tissue cells to distinguish mitotic and non-mitotic cells.

The DT-CWT based method has been evaluated on the
MITOS dataset used in the ICPR 2012 contest via a SVM
classifier. The method achieved an improved accuracy of
87.94%, sensitivity of 86.80%, specificity of 89.89%, and the
AUC values of 0.94 compared to the same features computed
from image intensities. The quantitative results suggested
that the wavelet-based statistical features are able to capture
important texture attributes related to mitosis development
and differentiate mitotic from non-mitotic cells.
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