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Abstract

Label Semantics is a random set based
framework for modeling imprecise con-
cepts where the degree of appropriateness
of a linguistic expression as a description
of a certain value is measured in terms of
how the set of appropriate labels for that
value varies across a population. An ap-
proach to decision tree induction based on
this framework was studied. A new deci-
sion tree learning algorithm was proposed
and its performance applied in real-world
data sets was compared with the C4.5 al-
gorithm.

1 Introduction

Traditionally machine learning and data min-
ing research have focused on learning algorithms
with high classification or prediction accuracy.
However, this is not always sufficient for some
application areas. We may require good algo-
rithm transparency which means that models
need to be easily understood and provide in-
formation regarding underlying trends and rela-
tionships. The research area of Computing with
Words (CW), proposed by Zadeh [6], provides
us with a framework in which to develop such
a system. Linguistic expressions such as small,
medium and large whose meaning can be repre-
sented by fuzzy sets, can be used to for modeling
and computing.

Here we present an alternative framework for
CW which was proposed by Lawry [2]. Label
Semantics, the new framework, is a random set
based semantics for modeling imprecise concepts
where the degree of appropriateness of a linguis-
tic expression as a description of a value is mea-
sured by mass assignment on labels. Linguis-
tic expressions are labels such as small, medium
and large. Such labels are defined by overlapped
fuzzy sets which are used to cover the continu-
ous universe of the variables. Based on this se-

mantics, a new tree-structured model, Linguistic
Decision Tree (LDT) is proposed. A linguistic
decision tree expands with focal elements from
level to level guided by information heuristics.
For each branch, the class probabilities given
this branch will be evaluated based on linguistic
data set. If one of the class probabilities reaches
a given threshold probability, this branch will be
terminated, otherwise, it will continue splitting
at the next level until a given maximum depth
is reached.

2 Label Semantics

The underlying question posed by label seman-
tics is how to use linguistic expressions (defined
by fuzzy sets) to label numerical values. For a
variable x into a domain of discourse Ω we iden-
tify a finite set of linguistic words (or labels)
LA = {L1, · · · , Ln} with which to label the val-
ues of x. Then for a specific value α ∈ Ω an
individual I identifies a subset of LA, denoted
DI

α to stand for the description of α given by I,
as the set of words with which it is appropriate
to label α. If we allow I to vary across a pop-
ulation V , then DI

x will also vary and generate
a random set denoted Dx into the power set of
LA. The frequency of occurrence of a partic-
ular label, say S, for Dx across the population
then we obtain a distribution on Dx referred to
as a mass assignment (see [1]) on labels, more
formally:

Definition 1 (Mass Assignment)

∀S ⊆ LA, mx(S) =
|{I ∈ V |DI

x = S}|
|V |

In this framework, appropriateness degree is
used to evaluate how appropriate a label is for
describing a particular value of variable x. It
can be defined as:

Definition 2 (Appropriateness Degrees)



∀x ∈ Ω, ∀L ∈ LA µL(x) =
∑

S⊆LA:L∈S

mx(S)

This definition provides a relationship between
mass assignments and appropriateness degrees.
Clearly µL is a function from Ω into [0,1] and
therefore can technically be viewed as a fuzzy
set. Simply, given a particular value α of vari-
able x, the appropriateness degree for labeling
this value with the label L, which is defined by
fuzzy set F , is the membership value of α belong-
ing to F . The reason we use the new term ‘ap-
propriateness degree’ is partly because it more
accurately reflects the underlying semantics and
partly to highlight the quite distinct calculus
based on this framework.

2.1 Label Semantics for Data Analysis

Based on the underlying semantics, we can
translate a set of numeric data into a set of lin-
guistic data, where each data value is replaced
by a mass assignment label set. It is certainly
true that a mass assignment on Dx determines
a unique appropriateness degree for any func-
tion but generally the converse does not hold.
That is if we know the appropriateness degrees
of the labels, we may not be able to infer a
unique underlying mass assignment. This prob-
lem can be overcome by the consonance assump-
tion, according to which we can determine the
mass assignment uniquely from the appropriate-
ness degrees as follows: Let {y1, y2, · · · , yk} =
{µL(x)|L ∈ LA, µL(x) > 0} ordered such that
yt > yt+1 for t = 1, 2, · · · , k − 1 then:

mx = Mt : yt − yt−1, t = 1, 2, · · · , k − 1,

Mk : yk, M0 : 1 − y1

where M0 = ∅ and Mt = {L ∈ LA|µL(x) ≥ yt}
for t = 1, 2 . . . , k. However, it is undesirable to
have mass associated with the empty set. In
order to avoid this, we need to make a full fuzzy
covering of the continuous universe.

Definition 3 (Full Fuzzy Covering) Given
a continuous discourse Ω, LA is called a full
fuzzy covering of Ω if:

∀x ∈ Ω, ∃L ∈ LA µL(x) = 1

Suppose we use NF fuzzy sets with 50% overlap,
so that the appropriateness degrees satisfy that
∀x ∈ Ω, ∃i ∈ {1, · · · , NF −1} such that µLi(x) =
1, µLi+1 = α and µLj (x) = 0 for j < i or j >
i + 1. In this case,

mx = {Li} : 1 − α, {Li, Li+1} : α
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Figure 1: Full fuzzy covering with 3 trapezoidal
fuzzy sets with 50% overlap.

For example, Figure 1 shows a full fuzzy covering
of the universe with three fuzzy labels: small,
medium and large. For the data point P , the
appropriate labels are small and medium, and
the appropriateness degrees of these labels are:

µsmall(P ) = 0.4, µmedium(P ) = 1
We can then obtain the mass assignments as fol-
lows:
mP = {medium} : 0.6, {small, medium} : 0.4

It is also interesting to note that given defi-
nitions for the appropriateness degrees on labels
we can isolate a set of subsets of LA as the only
values of Dx with non-zero probability. These
are referred to as focal sets :

Definition 4 (Focal Sets) The focal set of
LA is a set of focal elements defined as follows:

F = {S ⊆ LA|∃x ∈ Ω, mx(S) > 0}
Based on our assumption of a full fuzzy covering
with 50% overlap, the following focal elements
occur: {small}, {small,medium}, {medium},
{medium, large} and {large}. Since small and
large do not overlap, the set {small, large} can-
not occur. Then we can always find the unique
translation from a given data point to mass
assignment on focal elements, specified by the
function of µL. The new data set after transla-
tion is called linguistic data set.
Definition 5 (Linguistic Data Set) A lin-
guistic data set is a translation of real value data
set based on label semantics. Suppose we are
given a given data set D = {x1(i), · · · , xn(i)|i =
1, · · · , N} and focal set on attribute j: Fj =
{F1j , · · · , Fhj |j = 1, · · · , n}, then the linguistic
data set is defined as follow:

LD = {A1(i), · · · , An(i)|i = 1, · · ·N}
Aj(i) = {< mxj1(i)(F1j ), · · · , mxjh(i)(Fhj ) >}

where mxjr(i)(Frj ) is the associated mass of focal
element Frj , r = 1, · · · , h



3 Linguistic Decision Tree

The ID3 [4] algorithm for decision trees induc-
tion has proved to be an effective and popu-
lar algorithm for building decision trees from
discrete valued data sets. However, it cannot
cope with classification problems with continu-
ous attribute values. Here we propose a new
decision tree induction algorithm based on la-
bel semantics. Consider a real valued database
D = {x1(i), · · · , xn(i)|i = 1, 2, · · · , N}, with N
instances. Each instance has n attributes and is
labeled by one of the classes: {C1, · · · , Cm}. A
linguistic decision tree is a decision tree where
the nodes are the random sets and the branches
correspond to particular focal elements. More
formally:

Definition 6 (Linguistic Decision Tree) A
linguistic decision tree is a set of branches with
associated class probabilities of the following
form:

LDT = {< B1, P r(C1|B1), · · · , P r(Cm|B1) >,

· · · , < Bs, P r(C1|Bs), · · · , P r(Cm)|Bs) >}
A branch is defined as following:

Bi = {< Dx1i
, F1i >, · · · , < Dxki

, Fki >}
where, ki ≤ n and Fji ∈ Fji where j = 1, · · · , k.

A LDT is based on the form of the linguistic data
set. Each node splits into branches according to
the focal elements of this node(attribute). Each
branch has associated class probabilities. For
example, consider the branch:

<< Dx1 , {s, m} >, < Dx2 , {m} >, 0.3, 0.7 >

in a binary classification problem. This means
the probability of being class C1 is 0.3 and C2 is
0.7 if given attribute 1 can be described as small
& medium and attribute 2 can be described as
medium.

3.1 Evaluating Class Probabilities for a
Given Branch

A branch B can be assumed to have the form:

B = {< Dx1, F1 >, · · · , < Dxk
, Fk >}

where k ≤ n and Fi ∈ Fi. The probability of
Class Cj given B can then be evaluated from D
and Dj as follow:

Pr(Cj |B) =
S(B|Dj)
S(B|D)

where, S(B|Dj) =
∑

i∈Dj

∏k
r=1 mxr(i)(Fr) and

S(B|D) =
∑

i∈D

∏k
r=1 mxr(i)(Fr) �= 0 . Dj is

the subset consisting of instances belong to class
j. In the case of S(B|D) = 0, which happens
when we use a small scale data base for train-
ing LDT, the given branch has no corresponding
non-zero linguistic data. We obtain no informa-
tion from the given dataset so equal probabilities
are assigned to each class according to Laplace
correction.

Pr(Cj |B) =
1
m

if : S(B|D) = 0

where m is the number of classes.

3.2 Evaluating Class Probabilities
Given a Data Element

Consider a given data vector for classification in
the form of �y =< y1, y2, · · · , yn > which may not
be contained in the training data set D. Firstly,
we need to translate �y to linguistic data based
on the fuzzy covering of the training data. One
problem we may encounter is that, the data ele-
ment may be beyond the range of training data
set. Suppose the attribute j is in the range
of [pmin, pmax], which are covered by NF fuzzy
sets: F1, · · · , FNF . Then, we assign the appro-
priateness degrees of yj as follows:

µFi(yj) = µFi(pmin) if yj < pmin

µFi(yj) = µFi(pmax) if yj > pmax

where, i = 1, · · · , NF . Then, by Jeffrey’s rule
we can evaluate for the probabilities of class Cj

given a LDT, where j = 1, 2, · · · , m,

Pr(Cj |�y) =
s∑

v=1

Pr(Bv|�y)Pr(Cj |Bv)

and

Pr(B|�y) =
∏k

r=1 myr(Fr)

4 LID3 Algorithm

Linguistic ID3 (LID3) is the learning algorithm
for building a linguistic decision tree, and is an
extension of ID3. As ID3 search is guided by an
information based heuristics, but the informa-
tion measurements of LDT are modified from
classical ones and are based on the label seman-
tics model.

4.1 Searching Heuristics of LID3

The underlying search heuristic is based on the
measure of information defined for a branch B
and can be viewed as an extension of entropy
equation of ID3 in [3] :



Definition 7 (Branch Entropy) The
entropy of branch B is given by

E(B) =
m∑

j=1

Pr(Cj |B) log2(Pr(Cj |B))

Now, given a particular branch B, suppose we
want to expand it with attribute xi, The eval-
uation of this attribute will be given by the ex-
pected entropy defined as follows:

Definition 8 (Expected Entropy)

EE(B, xi) =
∑

Fi∈Fi
E(B ∪ {< Dxi, Fi >})

·Pr({< Dxi , Fi >}|B)

where, the probability of node < Dxi , Fi > given
B can be calculated as follows:

Pr({< Dxi, Fi >}|B) =
S(B ∪ {< Dxi , Fi >}|D)

S(B|D)

We can now define the Information Gain (IG)
obtained when expanding branch B with at-
tribute xi as:

IG(B, xi) = E(B) − EE(B, xi)

As with ID3 learning, the most informative
attribute will form the root of a linguistic deci-
sion tree, and the tree will expand into branches
associated with all possible focal elements of this
attribute. For each branch, the free attribute
with maximum information gain will form next
node, from level to level, until the tree reaches
the maximum depth. If the maximum class
probability given this branch is equal or greater
than a given threshold probability T , the branch
will be terminated at the current depth.

5 Experimental Studies

We applied LID3 algorithm to the Pima Indians
Diabetes database and Sonar database (See [5]),
respectively. Each attribute of the Pima data
is discretized uniformly by 3 full covering fuzzy
sets (e.g. see figure 1), and Sonar data with 2
such fuzzy sets, in order to obtain corresponding
linguistic data sets. Both linguistic databases
are split into two parts with the same number
of instances, one is used for training and the
other for testing. Table 1 shows the training
accuracy (Atr) and test accuracy (Ats) from 100
cross-validation tests on the Pima data set with
different maximum depth Mdep and threshold
probabilities T . Table 2 shows the results on the
Sonar data base on a particular split of original
database.

(T )/Mdep 1 2 3 4
(0.7)Atr 0.7442 0.7646 0.7833 0.8022

Ats 0.7488 0.7560 0.7563 0.7542
(0.8)Atr 0.7442 0.7739 0.8014 0.8323

Ats 0.7488 0.7474 0.7552 0.7499

Table 1: Results on Pima data set with 100
cross-validation.

(T )/Mdep 5 6 7 8
(0.9)Atr 0.9515 1.0000 1.0000 1.0000

Ats 0.7981 0.7855 0.7981 0.7885
(1.0)Atr 0.9515 1.0000 1.0000 1.0000

Ats 0.8365 0.8462 0.8654 0.8173

Table 2: Results on Sonar data set with a par-
ticular split.

The best result so far for Pima data is Ats =
0.7563, when T = 0.7 and Mdep = 3. The
test accuracy of C4.5 on the Pima data with
100 cross validation is 0.7422. We can not say
that results of LID3 are significantly better than
the C4.5. But, in Sonar data, the best result,
Ats = 0.8654, is significantly better than C4.5
algorithm with the test accuracy of 0.7259. In
the Pima test, compared to the decision tree
built from C4.5 which has the maximum depth
of 8, LDT needs only 2 or 3 levels to obtain
comparable (even better) accuracy. Therefore,
we can say that LDT has better transparency in
this experiment.
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