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Abstract

Label Semantics is a random set
based framework for Computing
with Words. Imprecise concepts are
modeled by the degrees of appropri-
ateness of a linguistic expression as
defined by a fuzzy set. An approach
to decision tree induction based on
this framework is studied and its
performance when applied to real-
world datasets is compared with the
C4.5 and other machine learning al-
gorithms. A method of classification
under linguistic constraints was pro-
posed and studied with experiments.

Keywords: Linguistic decision
trees, Label semantics, LID3, Mass
assignment, Focal sets.

1 Introduction

Traditionally machine learning and data min-
ing research has focused on learning algo-
rithms with high classification or predic-
tion accuracy. However, this is not always
sufficient for some application areas. We
may require a model with good transparency
from which information regarding underlying
trends and relationships can be easily under-
stood and interpret human languages rather
than a black box. The research area of Com-
puting with Words (CW), proposed by Zadeh
[11], provides us with a framework in which to
develop such a system. Here we present, La-
bel semantics, an alternative framework for

CW which was proposed by Lawry [4]. The
new framework is a random set based seman-
tics for modeling imprecise concepts where the
degree of appropriateness of a linguistic ex-
pression as a description of a value is mea-
sured in terms of how the set of appropriate
labels for that value varies across a popula-
tion. Linguistic expressions are labels such as
small, medium and large which are defined by
fuzzy sets covering the continuous universe of
the variables.

Previous research has focused on applying this
framework to Bayesian learning [9]. Here we
propose a new tree-structured model, Linguis-
tic Decision Trees (LDT). Like a traditional
decision tree, A LDT expands from level
to level guided by information content-based
heuristics, until a given maximum depth is
reached. For each branch, the class probabili-
ties given this branch will be evaluated based
on a linguistic training dataset, corresponding
to a linguistic translation of the original train-
ing dataset within this framework. Unlabeled
data is classified by a LDT based on Jeffrey’ s
rule. The case of data classification under lin-
guistic constraints is also studied. In the last
section, some experimental results are shown
to support the validity of our approach.

2 Label Semantics For Data
Analysis

The underlying question posed by label se-
mantics is how to use linguistic expressions to
label numerical values. For a variable x into a
domain of discourse Ω we identify a finite set
of linguistic labels LA = {L1, · · · , Ln} with



which to label the values of x. Then for a
specific value α ∈ Ω an individual I identifies
a subset of LA, denoted DI

α to stand for the
description of α given by I, as the set of words
with which it is appropriate to label α. If we
allow I to vary across a population V , then
DI

α will also vary and generate a random set
denoted Dα into the power set of LA. The
frequency of occurrence of a particular label,
say S, for Dα across the population then we
obtain a distribution on Dα referred to as a
mass assignment (see [1] for details) on labels,
more formally:

Definition 1 (Mass Assignment)

∀S ⊆ LA, mx(S) =
|{I ∈ V |DI

x = S}|
|V |

For example, given a set of labels defined on
a man’s age LAage = {young(y),middle −
aged(m), old(o)}. 3 of 10 people agree that
‘young is the only suitable label for the age of
30’ and 7 agree ‘both young andmiddle−aged
are suitable labels’. According to def. 1,
m30(y) = 0.3 and m30(y,m) = 0.7 so that
the mass assignment for 30 is

m30 = {y} : 0.3, {y,m} : 0.7

In this framework, appropriateness degree is
used to evaluate how appropriate a label is
for describing a particular value of variable x.
This measure can be defined based on mass
assignments as follows:

Definition 2 (Appropriateness Degrees)

∀x ∈ Ω,∀L ∈ LA µL(x) =
∑

S⊆LA:L∈S

mx(S)

This definition provides a relationship be-
tween mass assignments and appropriateness
degrees. For example, µyoung(30) = m30(y) +
m30(y,m) = 1. Clearly µL is a function from
Ω into [0,1] and therefore can technically be
viewed as a fuzzy set. Simply, given a par-
ticular value α of variable x, the appropriate-
ness degree for labeling this value with the
label L, which is defined by fuzzy set F , is

the membership value of α in F . The reason
we use the new term ‘appropriateness degree’
is partly because it more accurately reflects
the underlying semantics and partly to high-
light the quite distinct calculus based on this
framework [4].

Based on the underlying semantics, we can
translate a set of numeric data into a set of lin-
guistic data, where each data value is replaced
by a mass assignment label set. We need to
make some assumptions for this translation.
The first one is consonance assumption, ac-
cording to which we can determine the mass
assignment uniquely from the appropriateness
degrees as follows. (For the justification of the
consonance assumption in see [5])

Definition 3 (Consonance Assumption)
Let {β1, β2, · · · , βk} = {µL(x)|L ∈ LA,µL(x)
> 0} ordered such that βt > βt+1 for
t = 1, 2, · · · , k − 1 then:

mx = Mt : βt − βt−1, t = 1, 2, · · · , k − 1,

Mk : βk, M0 : 1 − β1

where M0 = ∅ and Mt = {L ∈ LA|µL(x) ≥
βt} for t = 1, 2 . . . , k.

Based on this assumption, there is a unique
mass assignment for a given set of appropri-
ateness degree values. For example, given
µL1 = 0.3 and µL2 = 1, the only unique conso-
nant mass assignment is {L2} : 0.7, {L1, L2} :
0.3. However, it is undesirable to have mass
associated with the empty set. In order to
avoid this, we define a full fuzzy covering of
the continuous universe.

Definition 4 (Full Fuzzy Covering)
Given a continuous discourse Ω, LA is called
a full fuzzy covering of Ω if:

∀x ∈ Ω,∃L ∈ LA µL(x) = 1

Suppose we use NF fuzzy sets with 50% over-
lap, so that the appropriateness degrees sat-
isfy: ∀x ∈ Ω, ∃i ∈ {1, · · · , NF − 1} such that
µLi(x) = 1, µLi+1 = α and µLj (x) = 0 for
j < i or j > i+ 1. In this case,

mx = {Li} : 1 − α, {Li, Li+1} : α
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Figure 1: An example of a full fuzzy covering
with 3 trapezoidal fuzzy sets with 50% overlap.

Example 1 Figure 1 shows a full fuzzy cov-
ering of the universe with three fuzzy labels:
small, medium and large. For the data point
P1 = 0.44, the appropriate labels are small
and medium (med.), and the appropriateness
degrees of these labels are:

µsmall(0.44) = 0.3, µmed.(0.44) = 1

The mass assignment on appropriate labels is:

m0.44 = {med.} : 0.7, {small,med.} : 0.3

It is also interesting to note that given defini-
tions for the appropriateness degrees on labels
we can isolate a set of subsets of LA as the
only values of Dx with non-zero probability.
These are referred to as focal sets:

Definition 5 (Focal Set) The focal set of
LA is a set of focal elements defined as:

F = {S ⊆ LA|∃x ∈ Ω,mx(S) > 0}

Based on our assumption of a full fuzzy cov-
ering with 50% overlap, the following fo-
cal elements occur in example 1: {small},
{small,medium}, {medium}, {medium, large}
and {large}. Since small and large do not
overlap, the set {small, large} cannot occur.
We can then always find the unique transla-
tion from a given data point to mass assign-
ment on focal elements, specified by the func-
tion of µL; we call this the linguistic transla-
tion (LT).

Definition 6 (Linguistic Translation)
Suppose we are given a data set D =
{x1(i),· · · , xn(i)|i = 1, · · · , N} with N

examples and focal set on attribute j:
Fj = {F 1

j , · · · , F h
j |j = 1, · · · , n}. (Here we

assume to have same size of focal sets h for
each attribute). By the linguistic translation,
we then obtain linguistic data set LD defined
as follow:

LD = {A1(i), · · · , An(i)|i = 1, · · ·N}
Aj(i) = {< mxj(i)(F

1
j ), · · · ,mxj(i)(F

h
j ) >}

where mxj(i)(F
r
j ) is the associated mass of fo-

cal element F r
j for data element xj(i) where

r = 1, · · · , h and j = 1, · · · , n.
For a particular attribute with an associated
focal set, linguistic translation is a process
of replacing data elements with masses of fo-
cal element masses these data elements. For
example, consider the figure 1, the linguistic
translation can be illustrated as follows.(

Data
0.44
0.78

)
LT→
( {s} {s, m} {m} {m, l} {l}

0 0.3 0.7 0 0
0 0 0 0.6 0.4

)

3 Linguistic Decision Tree

The ID3 [7] algorithm for decision trees in-
duction has proved to be an effective and
popular algorithm for building decision trees
from discrete valued data sets. However, it
cannot cope with classification problems with
continuous attribute values. The C4.5 [8] al-
gorithm was proposed as a successor to ID3
in which an approach to crisp partitioning of
continuous universe was adopted. The use
of crisp partitions can be problematic since
sudden and inappropriate behavior resulting
from small changes to inputs will reduce the
generalization capability and stability of the
system. Here we propose a new decision tree
induction algorithm based on label semantics
that can overcome this problem. Consider a
linguistic database (see Def. 6) LD with N
instances. Each instance has n attributes and
is labeled by one of the classes: {C1, · · · , Cm}.
A linguistic decision tree is a decision tree
where the nodes are the random sets and the
branches correspond to particular focal ele-
ments. More formally:

Definition 7 (Linguistic Decision Tree)
A linguistic decision tree is a set of branches



with associated class probabilities of the
following form:

LDT = {< B1, P r(C1|B1), · · · , P r(Cm|B1) >
, · · · < Bs, P r(C1|Bs), · · · , P r(Cm)|Bs) >}

and a branch B with k nodes is defined as:

B =< F 1
j1 , · · · , F k

jk
>

where, k ≤ n and F i
j ∈ Fj for i = 1, · · · , k.

A LDT is defined based on the form of the
linguistic data set. Each node splits into
branches according to the focal elements of
this node (attribute). One attribute is not al-
lowed to appear more than once in a branch,
an attribute which is not currently part of a
branch referred as a free attribute. The length
of a branch, the number of consisting nodes
(attributes), is less than or equal to n, the
number of attributes. In a LDT, the length
of the longest branch is called the depth of the
LDT, which is also less than or equal to n.

Each branch has associated class probabili-
ties. For example, consider the branch:

<< {small1,medium1}, {big2} >, 0.3, 0.7 >

in a binary classification problem. This means
the probability of class C1 is 0.3 and C2 is 0.7
given attribute 1 can be described as small &
medium and attribute 2 can only be described
as big.

3.1 Evaluating Class Probabilities
Given a Branch

According to the definition of LDT (def. 7),
if given a branch of a LDT in the form of

B =< F 1
j1 , · · · , F k

jk
>

The probability of Class Ct (t = 1, · · · ,m)
given B can then be evaluated from LD.

Pr(Ct|B) =
S(B,LDt)
S(B,LD)

where,

S(B,LDt) =
∑

i∈LDt

k∏
r=1

mxjr (i)(F
r
jr

)

S(B,LD) =
∑

i∈LD

k∏
r=1

mxjr (i)(F
r
jr

) �= 0

LDt is the subset consisting of instances be-
long to class t. In the case of S(B,LD) = 0,
which happens when we use a small database
for training a LDT, the given branch has no
corresponding non-zero linguistic data. We
obtain no information from the given dataset
so equal probabilities are assigned to each
class.

Pr(Ct|B) =
1
m

if : S(B,LD) = 0

where m is the number of classes.

3.2 Evaluating Class Probabilities
Given a Data Element

Consider classifying a given data element in
the form of �y =< y1, y2, · · · , yn > which may
not be contained in the training data set D.
Firstly, we need to translate �y to linguistic
data based on the fuzzy covering of the train-
ing data. In the case that a data element ap-
pears beyond the range of training data set
[Rmin, Rmax], we assign the appropriateness
degrees of Rmin or Rmax to the element de-
pends on which side of the range it appears.
Then, by Jeffrey’s rule we can evaluate the
probabilities of class Ct given a LDT with s
consisting branches as follows,

Pr(Ct|�y) =
s∑

v=1

Pr(Bv|�y)Pr(Ct|Bv)

where

Pr(B|�y) =
k∏

r=1

my(F r
jr

)

3.3 Classification Under Linguistic
Constraints

The linguistic model has the advantage of al-
lowing for data to be classified when some
background knowledge about attributes are
available in the form of linguistic constraints.
Linguistic constraints are represented by com-
pound label expressions. We interpret the



main logical connectives in the following man-
ners: ¬L means that L is not an appropriate
label, L1 ∧L2 means that both L1 and L2 are
appropriate labels, L1 ∨L2 means that either
L1 or L2 are appropriate labels, and L1 → L2

means that L2 is an appropriate label when-
ever L1 is. The linguistic constraints take the
form of θ =< x1 = LS1, · · · , xn = LSn >,
where LS represents a set of expressions gen-
erated by application of the connectives to the
labels. More generally, if we consider label ex-
pressions formed from LA by recursive appli-
cation of the connectives then an expression
θ identifies a set of possible label sets λ(θ).

Definition 8 (Possible Label Sets) Let θ
and ψ be expressions generated by recursive
application of the connectives ¬,∨,∧ and
→ to the elements of LA. Then the set of
possible label sets defined by a linguistic
expression can be determined recursively as
follows:

(i) λ(Li(x)) = {S ⊆ LA|{Li} ⊆ S}
(ii) λ(¬θ) = λ(θ)
(iii) λ(θ ∧ ψ) = λ(θ) ∩ λ(ψ)
(iv) λ(θ ∨ ψ) = λ(θ) ∪ λ(ψ)
(v) λ(θ → ψ) = λ(θ) ∪ λ(ψ)

Intuitively, λ(θ) corresponds to those subsets
of LA identified as being possible values of Dx

by expression θ. In this sense the imprecise
linguistic restriction ‘x is θ’ on x corresponds
to the strict constraint Dx ∈ λ(θ) on Dx.

Example 2 Given a continuous variable x
and LA = {small,medium, large}, and we
are told ‘x is not large but it is between
small and medium.’ It can be interpreted
into a logical expression

θx = ¬large ∧ (small ∨medium)

According to Definition 8, possible label sets
of the given linguistic constraint θx is

λ(θx) = λ(¬large ∧ (small ∨medium)) =
{{small}, {small,medium}, {medium}}

Consider the vector of linguistic constraints
�θ =< θ1, · · · , θn >, where θj is the linguistic
constraints on attribute j. We can evaluate

a probability value for Ct conditional on this
information using a given linguistic decision
tree as follows:

∀Fj ∈ Fj mθj
=

pm(Fj)∑
Fj∈λ(θj) pm(Fj)

= 0 otherwise

where pm(Fj) is the prior mass for focal ele-
ments Fj ∈ Fj derived from the prior distri-
bution p(xj) on Ωj as follows:

pm(Fj) =
∫
Ωj

mx(Fj)p(xj)dxj

Usually, we assume that p(xj) is the uniform
distribution over Ωj so that

pm(Fj) ∝
∫
Ωj

mx(Fj)dxj

Then for branch B

Pr(B|�θ) =
k∏

j=1

mθj
(Fj)

and therefore , by Jeffrey’s rule

Pr(Ct|�θ) =
s∑

v=1

Pr(Ct|Bv)Pr(Bv|�θ)

Consider the Example 2, if the prior mass as-
signment is

{small} : 0.2, {small,medium} : 0.1, {medium} :
0.2, {medium, large} : 0.15, {large} : 0.35.

With the previous given linguistic constraints
θx, we then obtain:

mθx = {small} : 0.2/(0.2 + 0.2 + 0.1) = 0.4,
{small,medium} : 0.2/(0.2+0.2+0.1) = 0.4,

{medium} : 0.1/(0.2 + 0.2 + 0.1) = 0.2,
{medium, large} : 0, {large} : 0

Based on this method, we can classify fuzzy
data with a LDT. Compared to linguistic
data, fuzzy data is represented only by a set
of appropriate labels, but without associated
masses on labels. E.g., in the Example 1, P1

can be interpreted as a fuzzy data {small &
medium}. This is equivalent to given a lin-
guistic constraint θP1 = (small ∧ medium),
according to which we can classify it using
the method described above.



4 LID3 Algorithm

Linguistic ID3 (LID3) is the learning algo-
rithm for building a linguistic decision tree.
As with ID3, search is guided by an infor-
mation based heuristics, but the information
measurements of LDT are modified in accor-
dance with label semantics. The underlying
search heuristic is based on the measure of in-
formation defined for a branch B and can be
viewed as an extension of entropy equation of
the ID3 algorithm:

Definition 9 (Branch Entropy) The
entropy of branch B is given by

E(B) = −
m∑

t=1

Pr(Ct|B) log2(Pr(Ct|B))

Now, given a particular branch B suppose we
want to expand it with attribute xj . The eval-
uation of this attribute will be based on the
expected entropy defined as follows:

Definition 10 (Expected Entropy)

EE(B,xj) =
∑

F r
j ∈Fj

E(B ∪ F r
j ) · Pr(F r

j |B)

where B ∪ F r
j represents adding the node F r

j

to branch B. The probability of F r
j given B

can be calculated as follows:

Pr(F r
j |B) =

S(B ∪ F r
j |LD)

S(B,LD)

We can now define the Information Gain (IG)
obtained by expanding branch B with at-
tribute xj as:

IG(B,xj) = E(B) − EE(B,xj)

As with ID3 learning, the most informative
attribute will form the root of a linguistic
decision tree, and the tree will expand into
branches associated with all possible focal el-
ements of this attribute. For each branch,
the free attribute with maximum information
gain will be the next node, from level to level,
until the tree reaches the maximum depth or
other termination conditions are satisfied.

Table 1: Description of datasets.

Dataset Cases Classes Features
Breast-w 699 2 9
Diabetes 768 2 8

Glass 214 6 9
Iris 150 3 4

Ionosphere 351 2 34
Sonar 208 2 60
Wine 178 3 14

5 Experimental Studies

In this section, we present a number of exam-
ples showing how the LDT model performs
on real world problems. Table 1 gives the
descriptions of the datasets we used for the
experiments. These datasets are from UCI
machine learning repository [2].

5.1 Accuracy Comparisons

Here in this paper, attributes are discretized
uniformly by 2 trapezoidal fuzzy sets with
50% overlap, and sub-classes are evenly
splited into two sub-datasets, one half for
training and the other half for testing (50-
50 split). We ran LID3, C4.5, Naive Bayes
Learning and Neural Network1 with 10 runs
of 50-50 split experiments on each dataset and
the average accuracies with standard devia-
tion are shown in the table 5. We then do the
paired t-tests [6] with 95% confidence to com-
pare LID3 with other 3 models. If LID3 wins,
we mark the corresponding data set with

√
.

For data set without marking, it means that
LID3 has equivelent (not significant better or
worse) accuracy according to the t-test.

Comparing with C4.5, LID3 obtained signifi-
cant better (confidence level is greater than
95%) results on 5 datasets of 7, and LID3
also performs better though not statistically
significant on other two datasets. Compar-
ing with Naive Bayes learning, LID3 is signif-
icant better on 4 datasets. Comparing with

1WEKA[10] is used to generate the results of J48
(C4.5 in WEKA version) unpruned tree, Navie Bayes
Learning and Nerual Network with default parameter
settings.



Table 2: Accuracy comparisons between LID3 and three other learning algorithms. Where each at-
tributes are uniformly discretized by 2 fuzzysets.

Results from 10 runs of 50%-50% split experiments (%) Whether LID3 wins
Data C4.5 N.B. N.N. LID3 C4.5 N.B. N.N.
Breast-w 94.38 ± 1.42 96.28 ± 0.73 94.95 ± 0.80 96.00 ± 0.65

√ √

Diabetes 72.16 ± 2.80 75.05 ± 2.37 74.64 ± 1.41 76.22 ± 1.81
√

Glass 64.77 ± 5.10 45.98 ± 7.00 64.30 ± 3.38 66.06 ± 3.89
√

Ionosphere 89.13 ± 2.13 82.97 ± 2.50 87.78 ± 2.88 88.98 ± 2.23
√

Iris 93.46 ± 3.23 94.53 ± 2.62 95.87 ± 2.70 96.53 ± 1.29
√ √

Sonar* 70.48 ± 0.00 70.19 ± 0.00 81.05 ± 0.00 86.54 ± 0.00
√ √ √

Wine 88.09 ± 4.14 96.29 ± 2.12 96.85 ± 1.57 95.33 ± 1.80
√

* A particular single split of the original dataset is used, so, the standard deviation is 0.

Neural Network, LID3 performs significantly
better only on 2 datasets and equivelent on 5
datasets. So far by our experiments, we can
say that the LDT model has comparable accu-
racy to Neural Network and performs better
than C4.5 and Naive Bayes learning.

5.2 Linguistic Constraints Testing on
the ‘Eight’ Problem

The ‘eight’ problem is a toy problem de-
fined as follows: A figure of eight shape
was generated according to the equation
x = 2(−0.5)(sin(2t) − sin(t)) and y =
2(−0.5)(sin(2t)+sin(t)) where t ∈ [0, 2π]. (See
figure 2). Points in [−1.6, 1.6]2 are classified
as legal if they lie within the ‘eight’ shape
(marked with ×) and illegal if they lie outside
(marked with points). The database consisted
of 961 examples generated from a regular grid
on [−1.6, 1.6]2 for training, and 961 unseen ex-
amples from the same distribution as the test
dataset.

Example 3 Suppose a LDT is trained on the
‘Eight’ database where each attribute is dis-
cretized by five fuzzy sets uniformly: very
small (vs), small (s), medium (m), large (l)
and very large (vl). Further, suppose we are
given the following description of data points:
θ1 =< x = vs ∨ s ∧ ¬m, y = vs ∨ s ∧ ¬m >
θ2 =< x = m ∧ l, y = s ∧m >
θ3 =< x = s ∧m, y = l ∨ vl >
Probabilities of illegal (·) and legal (×) given
the corresponding linguistic constraints are:

Pr(·|θ1) = 1.000 Pr(×|θ1) = 0.000
Pr(·|θ2) = 0.000 Pr(×|θ2) = 1.000
Pr(·|θ3) = 0.428 Pr(×|θ3) = 0.572

As we can see from figure 2, the above 3 lin-
guistic constraints are roughly correspond to
the area 1, area 2 and area 3, respectively. By
examining the occurrence of legal and illegal
examples, we verified the correctness of our
results.

As we have discussed in section 3.3, we test
our model based on fuzzy data (FD), on the
training set of the ‘eight’ problem and obtain
results that are shown in table 3, together
with the results based on linguistic data (LD).
Even without associated masses, our model
still gives a reasonable approximating of the
legal data area, though it is not as accurate
as testing on linguistic data, for example, see
the figure 3 and 4. The accuracy increases
with NF the number of fuzzy sets used for dis-
cretization, and obviously, the model works
uniformly better on linguistic data than on
fuzzy data. This example shows that LDT
model still can perform well in dealing with
real fuzzy and ambiguous data.

Table 3: Classification accuracy comparisons
based on linguistic data and fuzzy data without
masses on the ‘eight’ problem.

NF 3 4 5 6 7

LD 87.72% 94.17% 95.94% 97.29% 98.54%

FD 79.29% 85.85% 89.39% 94.17% 95.01%
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Figure 2: Testing on the ‘eight’ problem with
linguistic constraints, where each attribute is dis-
cretized by 5 fuzzy sets.
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Figure 3: Classification on linguistic dataset,
where each attribute is discretized uniformly by
7 fuzzy sets.
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Figure 4: Classification on fuzzy data without
masses, where each attribute is discretized uni-
formly by 7 fuzzy sets.

6 Conclusion

In this paper, we proposed a new decision tree
learning algorithm based on label semantics
and its performance on some UCI datasets
was studied. The model has comparable clas-
sification accuracy to the Neural Network and
better than C4.5 and Naive Bayes learning
with statistical significance on datasets listed
in table 1. The test of classifying under lin-
guistic constraints on a toy problem shows va-
lidity of our approach and it is feasible for
building a transparent machine learning sys-
tem with this approach.
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