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ABSTRACT: Fuzzy logic based methods have been widely
used in linguistic modeling [6]. Here we use a different frame-
work of random set to interpret imprecise concepts. This
framework is referred to as label semantics [8]. Within this
framework, fuzzy concepts are modeled by quantifying the
subjective uncertainty associated with whether or not a label
expression is appropriate to describe a particular value. In this
paper, a method of modeling data with logical expressions of
fuzzy labels is discussed and a simple information based algo-
rithm based on FOIL [10] is proposed for generating a set of
linguistic rules for classification.
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mass assignment, LFOIL.

1 INTRODUCTION

Rule learning has a long history within the field of machine
learning and data mining. Many separate-and-conquer rule-
based classification methods have been proposed and studied
comprehensively. Rule learning has much better transparency
compared to other sub symbolic models such as neural net-
works. A set of intuitively understandable rules can give us a
better understanding of how the classification is made. The re-
search of fuzzy rules (e.g, IF-THEN rules) have been widely
studied in both fuzzy or machine learning communities be-
cause of their good transparency and comparable accuracy to
other approaches [2]. Here in this paper, we use a random set
framework to interpret linguistic or fuzzy rules.

Label semantics is a random set based framework for using
linguistic expressions (or fuzzy labels) to model data. Previ-
ous work has been done to apply this framework to decision
tree learning [9] and Naive Bayes learning [11]. Empirical
results show that the new proposed models based on label se-
mantics have both improved transparency and accuracy. In
this paper, a method of using logical expressions of labels as
linguistic rules for classification is discussed. FOIL, initially
proposed by Quinlan [10], is a system to learn Horn clauses
from data expressed as relations. In this paper, we proposed a
new label semantics rule learning system based on FOIL and
tested on two problems.

This paper is organized as follows: Section 2 gives a short
introduction on label semantics and on the use random set de-
scriptions of fuzzy labels to analyze data. In section 3, logical
expressions of labels and the relation between random set de-
scription and logical expressions are discussed. In section 4,
the new algorithm for linguistic rule learning is introduced. In
section 5, we tested the new algorithm with an artificial data
set and a real-world data set.

2 RANDOM SET SEMANTICS

Label semantics, proposed by Lawry [8], is an approach to
modelling fuzzy concepts by quantifying the subjective un-
certainty associated with whether or not a label expression is
appropriate to describe a particular value or instance. The
semantics is based on random set theory but different from
earlier work of Goodman and Nguyen [4]. The underlying
question posed by label semantics is how to use linguistic ex-
pressions to label numerical values. For a variable x into a
domain of discourse Ω we identify a finite set of linguistic
labels L = {L1, · · · ,Ln} with which to label the values of x.
Then for a specific value x ∈Ω an individual I identifies a sub-
set of L , denoted DI

x to stand for the description of x given by
I, as the set of labels with which it is appropriate to label x.
If we allow I to vary across a population V , then DI

x will also
vary and generate a random set denoted Dx into the power set
of L . We can view the random set Dx as a description of the
variable x in terms of the labels in L . More formally,

Definition 1 (Label Description) For x∈Ω the label descrip-
tion of x is a random set from V into the power set of L , de-
noted Dx, with associated distribution mx, given by

∀S ⊆ L , mx(S) = PV ({I ∈V |DI
x = S})

Where PV is the prior distribution of V (We usually assumes
it is a uniform distribution) and mx(S) is the mass associated
with a set of labels S and

∑
S⊆L

mx(S) = 1

Intuitively mx(S) quantifies the evidence that S is the set of
appropriate labels for x.

For example, given a set of labels defined on the scores of a
single throw of a particular dice: Lscore = {small, medium,
large}. Suppose 7 of 10 people agree that ‘small is the
only appropriate label for the score of 2’ and 3 people agree
‘both small and medium are appropriate labels’. Accord-
ing to def.1, m2(small,medium) = 0.3 and m2(small) = 0.7
so that the mass assignment for 2 is m2 = {medium} : 0.3,
{low,medium}: 0.7. More details about the theory of mass
assignment can be found in [1].

Consider the previous example, can we know how appro-
priate for single label, say small, is to describe 2? In this
framework, appropriateness degrees are used to evaluate how
appropriate a single label is for describing a particular value
of variable x.

Definition 2 (Appropriateness Degrees)

∀x ∈ Ω,∀L ∈ L µL(x) = ∑
S⊆L :L∈S

mx(S)
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Simply, given a particular value α of variable x, the appropri-
ateness degree for labeling this value with the label L, which
is defined by fuzzy set F, is the membership value of α in
F . The reason we use the new term ‘appropriateness degrees’
is partly because it more accurately reflects the underlying
semantics and partly to highlight the quite distinct calculus
based on this framework [8]. This definition provides a re-
lationship between mass assignments and appropriateness de-
grees. Consider the previous example, we then can obtain

µsmall(2) = 0.7+ 0.3 = 1, µmedium(2) = 0.3

It is certainly true that a mass assignment on Dx determines
a unique appropriateness degree for any functions of µ L but
generally the converse does not hold. For example, given
µL1 = 0.3 and µL2 = 1. We may obtain the sets of appropriate
labels with associated masses as:

{L2} : 0.7,{L1,L2} : 0.3
{L1} : 0.1,{L2} : 0.8,{L1,L2} : 0.2
{L1} : 0.2,{L2} : 0.9,{L1,L2} : 0.1
· · · · · · · · · · · · · · ·

There are infinite number of possible representations. That is
if we know the appropriateness degrees of the labels, we may
not be able to infer a unique underlying mass assignment. This
problem can be overcame by making some assumptions.

The first is the consonance assumption, according to which
we can determine the mass assignment uniquely from the ap-
propriateness degrees as follows. (For the justification of the
consonance assumption, see [8])

Definition 3 (Consonance Assumption) Let {β1, · · ·, βk}=
{µL(x)|L ∈ LA, µL(x) > 0} ordered such that βt> βt+1 for
t = 1,2, · · · ,k−1 then:

mx = Mt : βt −βt−1,t = 1,2, · · · ,k−1,

Mk : βk, M0 : 1−β1

where M0 = /0 and Mt = {L∈L |µL(x)≥ βt} for t = 1,2 . . . ,k.

Based on this assumption, there is a unique mass assignment
for a given set of appropriateness degree values. For ex-
ample, given µL1 = 0.3 and µL2 = 1, the only unique con-
sonant mass assignment is {L2} : 0.7,{L1,L2} : 0.3, but not
{L2} : 0.8,{L1,L2} : 0.2,{L1} : 0.1 or others. However, it is
undesirable to have mass associated with the empty set. In or-
der to avoid this, we define a full fuzzy covering assumption as
follows:

Definition 4 (Full Fuzzy Covering) Given a continuous dis-
course Ω, LA is called a full fuzzy covering of Ω if:

∀x ∈ Ω,∃L ∈ L µL(x) = 1

Suppose we use NF fuzzy sets with 50% overlap, so that the
appropriateness degrees satisfy: ∀x ∈ Ω, ∃i ∈ {1, · · · ,NF −1}
such that µLi(x) = 1, µLi+1 = α and µLj (x) = 0 for j < i or
j > i+ 1. In this case,

mx = {Li} : 1−α ,{Li,Li+1} : α (1)

In this paper, unless otherwise stated, the fuzzy labels are
defined by trapezoidal fuzzy sets with 50% overlap. For exam-
ple, see figure 1 which shows a full fuzzy covering of Ω with
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Figure 1: A full fuzzy covering (discretization) with three trape-
zoidal fuzzy sets with 50% overlap on a continuous universe.

three fuzzy labels: small, medium and large. Based on these
assumptions, we can isolate a set of subsets of L with non-
zero mass assignments. These are referred to as focal sets:

Definition 5 (Focal Set) Given a universe Ω for variable x,
the focal set of F is a set of focal elements defined as:

F = {S ⊆ L |∃x ∈ Ω,mx(S) > 0}

Figure 1 shows the universe of a variables x which is fully
covered by 3 fuzzy sets with 50% overlap. For x, the following
focal elements occur: {small}, {small, medium}, {medium},
{medium, large} and {large}. Since small and large do not
overlap, the set {small, large} cannot occur as a focal ele-
ment according to def. 5. We can then always find the unique
translation from a given data point to a mass assignment on
focal elements, specified by the function µL; This is referred
to as linguistic translation (LT). For a particular attribute with
an associated focal set, linguistic translation is a process of re-
placing data elements with masses of focal elements of these
data. For example in fig. 1,

µsmall(x2 = 0.44) = 0.3, µmedium(x2 = 0.44) = 1

and µlarge(0.44) = 0. They are simply the memberships read
from the fuzzy sets. We then can obtain the mass assignment
of this data element according to eq. 1:

m0.44(medium) = 0.7, m0.44(small,medium) = 0.3

Similarly, the linguistic translations for x3 = 0.2 and x3 = 0.78
are as follows:

x1 = 〈µsmall(0.2) = 1, µmedium(0.5) = 1〉 →
m0.2(small) = 0.5, m0.2(small,medium) = 0.5

x3 = 〈µmedium(0.78) = 0.6, µlarge(0.78) = 1〉 →
m0.78(large) = 0.4, m0.78(medium, large) = 0.6,

Through the linguistic translation, numerical data can be rep-
resented by a random set descriptions on fuzzy labels. This
framework provides me a way of using high level knowledge
representation language to model data. In next section, we
will discuss the relation of logical expression of labels and
random set description of labels, while the former is the rep-
resentation of linguistic rules and the latter provides us a way
of quantifying the appropriateness of those rules.



3 LOGICAL EXPRESSIONS OF FUZZY LABELS

In label semantics, linguistic rules are represented by proposi-
tional logic sentences. Consider a formal language consisting
of the set of labels L = {L1, . . . ,Ln}, we can present com-
pound linguistic descriptions generated recursively by the ap-
plications of the connectives:

Definition 6 (Logical Expressions of Labels) The set of log-
ical expressions, LE, is defined by recursively as follows:

(i) Li ∈ LE for i = 1, . . . ,n.
(ii) If θ,ϕ ∈ LE then ¬θ,θ ∧ϕ ,θ ∨ϕ ,θ → ϕ ∈ LE

Basically, we interpret the main logical connectives as fol-
lows: ¬L means that L is not an appropriate label, L1 ∧ L2

means that both L1 and L2 are appropriate labels, L1 ∨ L2

means that either L1 or L2 are appropriate labels, and L1 → L2

means that L2 is an appropriate label whenever L1 is. If we
consider logical label expressions formed from L by recur-
sive application of the connectives then an expression θ iden-
tifies a set of possible label sets according to the following
λ -function.

Definition 7 (λ -function) Let θ and ϕ be expressions gener-
ated by recursive application of the connectives¬,∨,∧ and →
to the elements of L (i.e. θ,ϕ ∈ LE). Then the set of possible
label sets defined by a linguistic expression can be determined
recursively as follows:

(i) λ (Li(x)) = {S ⊆ F |{Li} ⊆ S}
(ii) λ (¬θ) = λ (θ)
(iii) λ (θ ∧ϕ ) = λ (θ)∩λ (ϕ )
(iv) λ (θ ∨ϕ ) = λ (θ)∪λ (ϕ )
(v) λ (θ → ϕ ) = λ (θ)∪λ (ϕ )

It should also be noted that the λ -function provides us with
notion of logical equivalence for label expressions

θ ≡L ϕ ⇐⇒ λ (θ) = λ (ϕ )

Basically, λ -function provides a way of transferring logical
expressions of labels (linguistic rules) to random set descrip-
tions of labels (i.e. focal elements). λ (θ) corresponds to those
subsets of F identified as being possible values of Dx by ex-
pression θ . λ (θ) corresponds a particular subset of focal set
based on the assumptions we made in section 2.

Example 1 Given a continuous variable x shown in fig. 1 and
Lx = {small, medium, large}, suppose we are told that “x is
not large but it is small or medium”. This constraint can be
interpreted as the logical expression

θx = ¬large∧ (small∨medium)

According to definition 7, the possible label sets of the given
logical expression θx are

λ (θx) = λ (¬large∧ (small ∨medium)) = {{small}, {small,
medium}, {medium}} ∧ ({{small}, {small, medium}}
∨ {{small, medium}, {medium}, {medium, large}}) =
{{small}, {small, medium}, {medium}}

3.1 Linguistic Interpretation of Appropriate Labels

Based on the inverse of the λ -function (def. 7), a set of lin-
guistic rules (or logical label expressions) can be obtained
from a given set of possible label sets. For example, sup-
pose we are given the possible label sets {{small},{small,
medium},{medium}}, which does not have an immediately
obvious interpretation. However using the α -function (see be-
low), we can convert this set into a corresponding linguistic
expression (small ∨medium)∧¬large or its logical equiva-
lence.

Definition 8 (α -function)

∀F ∈ F let N (F) =

( ⋃
F ′∈F :F ′⊇F

F ′
)
−F (2)

then αF =

(∧
L∈F

L

)
∧

 ∧

L∈N (F)

¬L


 (3)

We can then map a set of focal sets to label expressions based
on the α -function as follows:

∀R ∈ F θR =
∨

F∈R

αF where λ (θR) = R (4)

The motivation of this mapping is a follows. Given a fo-
cal set {s,m} this states that the labels appropriate to describe
the attribute are exactly small and medium. Hence, they in-
clude s and m and exclude all other labels that occur in fo-
cal sets that are supersets of {s,m}. Given a set of focal sets
{{s,m},{m}} this provides the information that the set of la-
bels is either {s,m} or {m} and hence the sentence providing
the same information should be the disjunction of the α sen-
tences for both focal sets. The following example gives the
calculation of the α -function.

Example 2 Let L ={very small (vs), small (s), medium (m),
large(l), very large (vl)} and F ={{vs,s}, {s}, {s,m}, {m},
{m, l}, {l}, {l,vl}}. For calculating α{l}, we obtain

F ′ ∈ F : F ′ ⊇ {l} = {{m, l},{l},{l,vl}} = {m, l,vl}

N ({l}) =


 ⋃

F ′∈F :F ′⊇{l}
F ′

−{l} = {l,vl,m}−{l} = {vl,m}

α{l} =

(∧
L∈F

L

)
∧

 ∧

L∈N (F)

¬L


= (l)∧(¬m∧¬vl) =¬m∧ l∧¬vl

Also we can also obtain

α{m,l} = m∧ l α{l,vl} = l ∧ vl

Hence, a set of label sets {{m, l},{l},{l,vl}} can be repre-
sented by a linguistic expression as follows,

θ{{m,l},{l},{l,vl}} = α{m,l} ∨α{l} ∨α{l,vl} =

(m ∧ l) ∨ (¬ m ∧ l ¬ vl) ∨ (l ∧ vl) ≡L large

where ‘≡L’ represents logical equivalence (see def. 7).

Basically, α -function provides a way of obtaining logical ex-
pressions from a random set description of labels. It is an
inverse process of λ -function.



3.2 Appropriateness Degrees for Linguistic Rules

Based on def. 7, we can easily extend λ -function to the multi-
dimensional case, such that the set of n-dimensional label ex-
pressions MLE(n) is defined by:

Definition 9 (Multi-dimensional λ -function) λ (n): MLE(n)

→ 2(2L1×···×2Ln) is defined recursively as follows: Let F j

denote the set of focal elements for L j: j = 1, · · · ,n then
∀θ ∈ MLE(n), λ (n) ⊆ F1 ×·· · ,Fn.

Given a particular data, how can we evaluated if a linguis-
tic rule is appropriate for describing it? Based on the one-
dimensional case, we now extend the concepts of appropriate-
ness degrees to the multi-dimensional case as follows:

Definition 10 (Multi-dimensional Appropriateness Degrees)
Given a set of n-dimensional label expression MLE (n):

∀ θ ∈ MLE(n),∀x j ∈ Ω j : j = 1, · · · ,n,

µn
θ(x) = µn

θ(x1, · · · ,xn) = ∑
〈F1,···,Fn〉∈λ (n)(θ)

(F1, · · · ,Fn)

= ∑
〈F1,···,Fn〉∈λ (n)(θ)

n

∏
j=1

mxj (Fj)

The appropriateness degrees in one-dimension are for evalu-
ating a single label for describing a single data element, while
in multi-dimensional cases are for evaluating a linguistic rule
for describing a data vector.

Example 3 Consider a modelling problem with two vari-
ables x1 and x2 for which L1 = {small (s), medium (med),
large(lg)} and L2 = {low(lo), moderate(mod), high(h)}.
Also suppose the focal elements for L1 and L2 are:

F1 = {{s},{s,med},{med},{med, lg},{lg}}
F2 = {{lo},{lo,mod},{mod},{mod,h},{h}}

According to the multi-dimensional generalization of defini-
tion 7 we have that

λ (2)((med ∧¬s)∧¬lo) = λ (2)(med∧¬s)∩λ (2)(¬lo)

= λ (med∧¬s)×λ (¬lo)

Now, the set of possible label sets is obtained according to the
λ -function:

λ (med∧¬s) = {{med},{med, lg}}
λ (¬lo) = {{mod},{mod,h},{h}}

Hence,

λ (2)((med ∧¬s)∧¬lo) = {〈{med},{mod}〉,〈{med},
{mod,h}〉,〈{med},{h}〉,〈{med, lg},{mod}〉,

〈{med, lg},{mod,h}〉,〈{med, lg},{h}〉}

Given x = 〈x1,x2〉 = 〈x1 = {med} : 0.6,{med, lg} : 0.4〉,
〈x2 = {lo,mod} : 0.8,{mod} : 0.2〉, we obtain:

µθ(x) = (m({med})+ m({med, lg}))× (m({mod})+
m({mod,h})+ m({h})) = (0.6+ 0.4)× (0.2+0+0)= 0.2

And according to def. 7:

µn
¬θ(x) = 1− µθ(x) = 0.8

4 LINGUISTIC RULE INDUCTION

In previous sections, we have shown how to evaluate the ap-
propriateness of using a linguistic rule to describe a data vec-
tor. In this section, a new algorithm for learning a set of lin-
guistic rules is proposed based on the FOIL algorithm [10]. It
is referred to as Linguistic FOIL (LFOIL). Like FOIL, Lin-
guistic FOIL uses an information-based estimate which pro-
vides effective guidance for rule construction.

4.1 Information Heuristics

The heuristics are for assessing the usefulness of a literal as
the next component of the rule. Here the heuristics used for
learning the linguistic rules are modified from the FOIL algo-
rithm [10]. Consider a classification rule of the form:

Ri = θ →Cj where θ ∈ MLE(n)

Given a data set D and a particular class C j, the data belong-
ing to class Cj are referred to as positive examples and the
rest of them are negative examples. For the given rule R i, the
coverage of positive data is evaluated by

T +
i = ∑

k∈D j

µθ(xk) (5)

and the coverage of negative examples is given by

T−
i = ∑

k∈D−D j

µθ(xk) (6)

where D j is the subset of the database which is consisted by
the data belonging to class C j. The information for the original
rule Ri

1 can by evaluated by

I(Ri) = − log2

(
T +

i

T +
i + T−

i

)
(7)

Suppose we then propose to another label expression ϕ to
the body of Ri to generate a new rule

Ri+1 = ϕ ∧θ →Cj

where ϕ ,θ ∈ MLE(n). By adding the new literal ϕ , the infor-
mation becomes:

T +
i+1 = ∑

k∈D j

µθ∧ϕ (xk) (8)

T−
i+1 = ∑

k∈D−D j

µθ∧ϕ (xk) (9)

Therefore,

I(Ri+1) = − log2

(
T+

i+1

T +
i+1 + T−

i+1

)
(10)

Then we can evaluate the information gain from adding ex-
pression ϕ as follows.

G(ϕ ) = T+
i+1(I(Ri)− I(Ri+1)) (11)

1We use two different notations of appropriateness degrees for the rule Ri

= θ → Cj : µθ and µRi . The former is used in logical expressions and the
latter is used in rule learning algorithm.



We can see that G measure consists of two components. T +
i+1 is

the coverage of positive data by the new rule Ri+1 and (I(Ri)−
I(Ri+1)) is the increase of information. The probability of C j

given a linguistic rule Ri is evaluated by:

P(Cj|Ri) =
∑k∈D j

µθ(xk)

∑k∈D µθ(xk)
=

T+
i

T+
i + T−

i

(12)

when P(Cj|Ri+1) > P(Cj|Ri) (i.e., by appending a new lit-
eral, more positive examples are covered), we can obtain that
(I(Ri)− I(Ri+1)) > 0. By choosing a literal ϕ with maximum
G value, we can form the new rule which covers more positive
examples and thus increasing the accuracy of the rule.

4.2 LFOIL

We define a prior knowledge based KB ⊆ MLE (n) and a prob-
ability threshold PT ∈ [0,1]. KB consists of fuzzy label ex-
pressions based on labels defined on each attribute. For exam-
ple,suppose we use fuzzy labels {small1 large1} to describe
attribute 1 and {small2 large2} to describe attribute 2. In this
case a possible knowledge base is: KB = {small1, ¬small1,
large1, ¬large1, small2, ¬small2, large2, ¬large2}.

Generating a Rule

• Given rule Ri = θ1∧·· ·∧θd →Cj be the rule at step i, we
find the next literal θd+1 ∈ KB−{θ1, · · · ,θd} for which
G(θd+1) is maximal.

• Replace rule Ri with Ri+1 = θ1 ∧·· ·∧θd ∧θd+1 →Cj

• If P(Cj|θ1 ∧·· ·∧θi+1) ≥ PT then terminate else repeat.

Generating a Rule Base

Let ∆i = {R1 → Cj, · · · ,Rt → Cj} be the rule-base at step i.
We evaluate the coverage of ∆i as follows:

CV (∆i) =
∑k∈D j

µR1∨···∨Rt (xk)

|D j| (13)

We define a coverage function δ : Ω1 × ·· · ×Ωn → [0,1] ac-
cording to:

δ(x|∆i) = µ¬∆i(x) = µ¬(R1∨···∨Rt)(x) (14)

= 1− µ(R1∨···∨Rt)(x) = 1−
t

∑
w=1

µRw(x)

where δ(x|∆i) represents the degree to which x is not covered
by a given rule base ∆i. If CV is less than a predefined cover-
age threshold CT ∈ [0,1]:

CV (∆i) < CT

then we generate a new rule for class C j according to the above
rule generation algorithm to form a new rule base ∆ i+1 but
where the entropy calculations are amended such that for a
rule R = θ →Cj,

T + = ∑
k∈D j

µθ(xk)×δ(xk|∆i) (15)
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Figure 2: The illustration of the ‘eight’ problem, where each at-
tribute is discretized by 5 fuzzy sets: very small, small, medium, large
and very large, respectively.

T− = ∑
k∈D−D j

µθ(xk) (16)

The algorithm terminates when CV (RBi+1) ≥ CT or
CV (RBi+1)−CV (RBi)< ε where ε ∈ [0,1] is a very small
value.

4.3 Class Probabilities Given a Rule Base

Given a rule base ∆i = {R1 →Cj, · · · ,Rt →Cj} and an unclas-
sified data x, we can estimate the probability of C j, P(Cj|x),
as follows: Firstly, we determine the rule Rmax →Cj for which
µRk(x) is maximal:

Rmax = max
k∈∆i

µRk (17)

Given the unclassified data x, rule Rmax is the most appropriate
rule from the rule base we learned. For the rule Rmax →Cj we
evaluate two probabilities pmax and qmax where:

pmax = P(Cj|Rmax) (18)

and,
qmax = P(Cj|¬Rmax) (19)

We then use Jeffrey’s rule [5] to evaluate the class probability
by:

P(Cj|x) = pmax × µRmax(x)+ qmax× (1− µRmax(x)) (20)

5 EXPERIMENTAL STUDIES

In this section we test the new algorithm with a toy problem
described as follows: A figure of eight shape was generated
according to the equation x = 2(−0.5)(sin(2t) − sin(t)) and
y = 2(−0.5)(sin(2t)+ sin(t)) where t ∈ [0,2π] (see figure 2).
Points in [−1.6,1.6]2 are classified as legal if they lie within



the ‘eight’ shape (marked with ×) and illegal if they lie outside
(marked with points). The database is consisted of 961 exam-
ples generated from a regular grid on [−1.6,1.6] 2 for training,
and 961 unseen examples from the same distribution as the
test data set.

The following rules are generated by LFOIL algorithm with
PT = 0.7, CV = 0.9 and ε = 0.005:

R1 : x is ¬ very small ∧ small ∧ medium ∧ ¬ large and y
is ¬ small ∧ medium → legal
R2 : x is ¬ small ∧ medium and y is ¬ very small ∧ small ∧
medium ∧ ¬ large → legal
R3 : x is medium ∧ ¬ large and y is large ∧ very large → legal
R4 : x is large ∧ very large and y is medium ∧ ¬ large → legal
R5 : x is very small ∧ small ∧ ¬ medium and y is medium ∧ ¬
large → legal
R6 : x medium ∧ ¬ large and y is very small ∧ small ∧ ¬
medium → legal

These rules are symmetric and as we can see from the fig.
2, the rules capture the legal area very well. The area covered
by R1 is marked by a box shown in fig. 2.

We also tested the LFOIL on the Pima Indianan data which
is a benchmark problem from UCI machine repository [3]: the
database contains the details of 768 females from the popula-
tion of Pima Indians living near Phoenix Arizona, USA. The
diagnostic binary-valued variable investigated is whether the
patient shows sign of diabetes according to the world Health
Organisation criteria. We use 3 fuzzy labels: low, medium and
high for each of the 8 attributes. Half of the data is used for
training and the rest of them for test. We got the test accuracy
of 71.67% with the following rules that decide patient have
the signs of diabetes:

R1: Plasma concentration (Attribute 2) is low ∧ medium and
the Number of times pregnant (Attribute 1) is medium ∧ ¬
high
R2: Plasma concentration is medium and age (Attribute 8) is
¬ low
R3: Plasma concentration is low ∧ medium and the Number
of times pregnant is high
R4: Plasma concentration is ¬ medium ∧ high and Diabetes
pedigree function (Attribute 7) is medium

For this problem, C4.5 has the average accuracy of 72.16%,
Naive Bayes has 75.05% and Neural network has 74.64% [9].
Although the accuracy is not better than other models (it is
only a slightly worse than C4.5), the transparency is greatly
improved by using only 4 rules that give much better under-
standing this problem.

6 CONCLUSIONS AND DISCUSSIONS

In this paper, we introduce a method for linguistic rule genera-
tion based on label semantics. In particular, a new algorithm is
proposed based on FOIL algorithm and tested on a toy prob-
lem and a real-world problem from UCI repository. The re-
sults show that very compact linguistic rules can be learned
that reflect the essence of the problem.

The main contribution of this paper is to describe a method

of evaluating linguistic rules through label semantics and to
propose a new FOIL based algorithm for linguistic rule learn-
ing. In the new algorithm, we use a information based heuris-
tics to guide the rule construction. This is not the only way
of constructing good rules. Another approach is to search ex-
haustively through the knowledge base KB. Assuming that we
do not use too many fuzzy labels for discretization, this ap-
proach may also be computational tractable. The rules which
covers less positive examples will be discard according to a
predefined threshold. Ref [2] reports similar idea for gen-
erating simple fuzzy logic (IF-THEN) rules. Future work is
needed for testing this approach with more data sets and to
study the influence of ranging parameter settings.
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