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ABSTRACT: Linguistic decision tree (LDT) is a tree-
structured model based on a framework for linguistic mod-
eling [5]. In previous research [8], an algorithm for learning
LDTs was proposed and its performance on some benchmark
classification problems were investigated and compared with
a number of well known classifiers. In this paper, a method-
ology for extending LDTs to prediction problems is proposed
and the performance are compared with other state-of-art pre-
diction algorithms such as a Support Vector Regression (SVR)
system and Fuzzy Semi-Naive Bayes on two real-world appli-
cations. A forward merging algorithm for LDT prediction is
also discussed for generating more compact trees.

Keyword: Label semantics, linguistic decision tree, mass as-
signment, forward merging.

1 INTRODUCTION

As one of the most successful branches of Artificial Intelli-
gence, machine learning and data mining research has de-
veloped rapidly in recent decades. However, most machine
learning algorithms specialize on classification problems. But
in many real-world applications, data ranging from financial
analysis to weather forecasting are prediction problems. Tree
induction algorithms were received a great deal of attention
because of their simplicity and effectiveness. From early dis-
crete decision trees such as ID3 and C4.5 [9] to a variety types
of fuzzy decision trees [4, 6, 12], most tree induction mod-
els are designed for classification but not for prediction, al-
though there is some research on regression trees. For exam-
ple, Breiman et. al’s CART algorithm [2]. Here we present a
tree-structured prediction model based on a high-level knowl-
edge representation framework which is referred to as Label
Semantics [5].

Label semantics is a random set semantics for modeling im-
precise concepts where the degree of appropriateness of a lin-
guistic expression as a description of a value is measured in
terms of how the set of appropriate labels for that value varies
across a population. It provides us a framework for modeling
uncertainty with good transparency. Based on label seman-
tics, Linguistic Decision Tree (LDT) model [8] was proposed
where linguistic expressions such as small, medium and large
are used to build a tree guided by information based heuris-
tics. For each branch, instead of labeling it with a certain class
(such as positive or negative) the probability of members of
this branch belonging to a particular class is evaluated from
a given training dataset. Unlabeled data is then classified by
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using probability estimation of classes across the whole de-
cision tree. So, LDT model can be regarded as a probability
estimation tree model based on fuzzy labels.

In this paper, the LDT classification model is extended
to prediction and empirical results on two benchmark prob-
lems are presented. The results are compared with the other
three prediction models: Support vector regression system [3],
Fuzzy Naive Bayes and Fuzzy Semi-Naive Bayes [10].

2 LABEL SEMANTICS

Label semantics [5] is a random set framework to capture the
idea of using linguistic expressions to label imprecise con-
cepts. The underlying question posed by label semantics is
how to use linguistic expressions to label numerical values.
For a variable x into a domain of discourse Ω we identify a
finite set of linguistic labels LA = {L1, · · · ,Ln} with which to
label the values of x. Then for a specific value α ∈ Ω an indi-
vidual I identifies a subset of LA, denoted DI

α to stand for the
description of α given by I, as the set of words with which it
is appropriate to label α . If we allow I to vary across a pop-
ulation V , then DI

α will also vary and generate a random set
denoted Dα into the power set of LA. The frequency of occur-
rence of a particular label, say S, for Dα across the population
then we obtain a distribution on Dα referred to as a mass as-
signment [1] on labels, more formally:

Definition 1 (Mass Assignment on Labels)

∀S ⊆ LA, mx(S) =
|{I ∈V |DI

x = S}|
|V |

For example, given a set of labels defined on the tempera-
ture outside: LATemp = {low, medium, high}. Suppose 3 of
10 people agree that ‘medium is the only appropriate label for
the temperature of 15◦ and 7 agree ‘both low and medium are
appropriate labels’. According to def. 1, m15(medium) = 0.3
and m15(low, medium) = 0.7 so that the mass assignment for
15◦ is

m15 = {medium} : 0.3,{low,medium} : 0.7

More details about the theory of mass assignment can be
found in [1].

Consider the previous example, can we know how appro-
priate for a single label, say low, to describe 15◦? In this
framework, appropriateness degrees are used to evaluate how
appropriate a label is for describing a particular value of vari-
able x. Simply, given a particular value α of variable x, the
appropriateness degree for labeling this value with the label
L, which is defined by fuzzy set F , is the membership value
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of α in F . The reason we use the new term ‘appropriateness
degrees’ is partly because it more accurately reflects the un-
derlying semantics and partly to highlight the quite distinct
calculus based on this framework [5]. This definition provides
a relationship between mass assignments and appropriateness
degrees.

Definition 2 (Appropriateness Degrees)

∀x ∈ Ω,∀L ∈ LA µL(x) = ∑
S⊆LA:L∈S

mx(S)

Consider the previous example, we then can obtain

µmedium(15) = 0.7+ 0.3 = 1, µlow(15) = 0.7

Based on the underlying semantics, we can translate a set of
numeric data into a set of mass assignments on appropriate
labels based on the reverse of definition 2 under some as-
sumptions: consonance mapping, full fuzzy covering and 50%
overlapping [8]. These assumptions are fully described in [8]
and justified in [5]. All these assumptions guarantee there
is unique mapping from appropriate degrees to mass assign-
ments on labels. Based on these assumptions, we can isolate
a set of subsets of LA with non-zero mass assignments. These
are referred to as focal sets:

Definition 3 (Focal Set) The focal set of LA, F , is a set of
focal elements defined as:

F = {S ⊆ LA|∃x ∈ Ω,mx(S) > 0}

Figure 1 shows the universes of two variables x1 and x2

which are fully covered by 3 fuzzy sets, respectively. For
x1, the following focal elements occur: {small1}, {small1,
medium1}, {medium1}, {medium1, large1} and {large1}.
Since small1 and large1 do not overlap, the set {small1,
large1} cannot occur as a focal element according to def. 3.
We can then always find the unique translation from a given
data point to a mass assignment on focal elements, specified
by the function µL; This is referred to as linguistic transla-
tion (LT). For a particular attribute with an associated focal
set, linguistic translation is a process of replacing data ele-
ments with masses of focal elements of these data. For exam-
ple in fig. 1, µsmall1(x1(1) = 0.27) = 1, µmedium1(0.27) = 0.6
and µlarge1(0.27) = 0. They are simply the memberships read
from the fuzzy sets. We then can obtain the mass assignment
of this data element according to def. 2 under consonance as-
sumption [8]:

m0.27(small1) = 0.4, m0.27(small1,medium1) = 0.6

Similarly, the linguistic translation for x1 = 〈x1(1) = 0.27,
x2(1) = 158 〉 and x2 = 〈x1(2) = 0.7, x2(2)= 80 〉 is illustrated
on each attribute independently as follows: x1

x1(1) = 0.27
x1(2) = 0.7

 LT→
 {s1} {s1,m1} {m1} {m1, l1} {l1}

0.4 0.6 0 0 0
0 0 0.2 0.8 0


 x2

x2(1) = 158
x2(2) = 80

 LT→
 {s2} {s2,m2} {m2} {m2, l2} {l2}

0 0 0 0.4 0.6
0.4 0.6 0 0 0
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Figure 1: Full fuzzy covering (discretization) with three 50% over-
lapped fuzzy sets on two attributes x1 and x2, respectively.

3 LINGUISTIC DECISION TREES

Linguistic decision tree (LDT) [8] is a tree-structured clas-
sification model based on label semantics. The information
heuristics used for building the tree are modified from ID3 in
accordance with label semantics. The class probability esti-
mation for each branch is evaluated according to the training
set. Classification are made by considering the class probabil-
ities across the whole tree. This model is fully described in
[8], a concise introduction is given here for the purpose of this
paper.

3.1 Linguistic decision trees for classification

Consider a database with n attributes and N instances and each
instance is labeled by one of the classes: {C1, · · · ,Cm}. A
linguistic decision tree built from this database can be defined
as follows:

LDT = {〈B1,P(C1|B1), · · · ,P(Cm|B1)〉, · · ·
〈Bs,P(C1|Bs), · · · ,P(Cm|Bs)〉}

where P(Ct |B) is the probability of class Ct given a branch B.
A branch with k nodes is defined as:

B = 〈F1, · · · ,Fk〉
where, k ≤ n and Fj ∈ F j is one of the focal elements of at-
tribute j. Figure 2 gives an illustration of a linguistic deci-
sion tree where each attribute is discretized by 3 fuzzy labels:
small, medium and large with 50% overlap. For a binary clas-
sification problem, the branch

〈〈{small1},{medium2, large2}〉,0.3,0.7〉
means the probability of class C1 is 0.3 and C2 is 0.7 given
attribute 1 can be described as small and attribute 2 can only
be described as medium and large.

Basically, fuzzy discretization provides an interpretation
between numerical data and linguistic data based on label se-
mantics. The effectiveness of fuzzy discretization may af-
fect the algorithm’s performance. In this paper, we will use
percentile-based discretization: each attribute universe is par-
titioned into intervals which each contains approximately the
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Figure 2: An illustration of a linguistic decision tree.

same number of data elements. It is a very intuitive way for
generating fuzzy sets.

Given a training set with N instances: DB = {x1, · · · ,xN}
where each instance has n attributes: 〈x1, · · · ,xn〉. In the fol-
lowing we will simply write an instance 〈x1 = X1, . . . ,xn = Xn〉
as x to simplify notation. The probability of class Ct (t =
1, · · · ,m) given B can then be evaluated as follows. First, we
consider the probability of a branch B given x:

P(B|x) =
k

∏
r=1

mxj (Fj) (1)

mxj (Fj) for j = 1, · · · ,k are mass assignments of single data
element x j. Consider the previous example, suppose we are
given a branch B = 〈{small1},{medium2, large2}〉 in fig. 1
and data x1 = 〈0.27,158〉 (the linguistic translation of x1 was
given in last section). According to eq. 1:

P(B|x1) = mx1({small1})×mx2({medium2, large2})

= 0.4×0.4 = 0.16

The probability of class Ct given B can then be evaluated by:

P(Ct |B) =
∑i∈DBt P(B|xi)
∑i∈DB P(B|xi)

(2)

where DBt is the subset consisting of instances which belong
to class t. In the case of ∑i∈DBP(B|xi) = 0, which can occur
when the training database for the LDT is small, then there
is no non-zero linguistic data covered by the branch. In this
case, we obtain no information from the database so that equal
probabilities are assigned to each class.

P(Ct |B) =
1
m

f or t = 1, · · · ,m (3)

Now consider classifying an unlabeled instance in the form
of x = 〈x1, · · · ,xn〉 which may not be contained in the training
data set DB. First we apply linguistic translation to x based
on the fuzzy covering of the training data DB. In the case that
a data element appears beyond the range of training data set
[Rmin,Rmax], we assign the appropriateness degrees of Rmin or
Rmax to the element depending on which side of the range it

appears. Then, according to the Jeffrey’s rule the probabili-
ties of class Ct given a LDT with s branches are evaluated as
follows:

P(Ct |x) =
s

∑
v=1

P(Ct |Bv)P(Bv|x) (4)

where P(Ct |Bv) and P(Bv|x) are evaluated based on equations
1 and 2 (or 3), respectively.

3.2 Linguistic decision trees for prediction

Now consider a database for prediction DB =
{〈x1(i), · · · ,xn(i),xt(i)〉 |i = 1, · · · ,N} where x1, · · · ,xn are po-
tential explanatory attributes and xt is the continuous target
attribute. For the target attribute xt : Ft = {F1

t , · · · ,F |Ft |
t }, we

can consider each focal element of target attributes as class la-
bels. The LDT model for prediction then have the following
form:

LDT = {〈B1,P(F1
t |B1), · · · ,P(F |Ft |

t |B1)〉, · · · ,
〈Bs,P(F1

t |Bs), · · · ,P(F |Ft |
t |Bs)〉}

The problem of considering the target focal elements as class
labels is, these “classes” overlap each other so that we cannot
deal them as normal discreet classes. At the stage of training,
for a particular instance xi, (xi → xt(i)), there may be sev-
eral corresponding target focal elements rather than one. The
membership of xi belonging to a particular target focal ele-
ment Fu

t is measured by ξ as follows:

ξ u
i = mxt(i)(F

u
t ) (5)

for u = 1, · · · , |Ft |. In another words, ξ u
i is the associated

mass of Fu
t given xt(i). The corresponding target focal ele-

ments with a membership for x i are as follows: xi → 〈F1
t :

ξ 1
i , · · · ,F |Ft |

t : ξ |Ft |
i 〉. However, since we have made an as-

sumption of 50% overlapping on fuzzysets, so, at most two
values of {ξ 1, · · · ,ξ |Ft |} are non-zero. We can also consider
ξ as an indicator: if ξ u

i �= 0 then Fu
t is one of the correspond-

ing target focal elements for the data element x i, otherwise,
Fu

t is not. Similar to equation 2, the probability of F u
t given B

is evaluated as follows:

P(Fu
t |B) =

∑i∈DB ξ u
i P(B|xi)

∑i∈DB P(B|xi)
(6)

where Fu
t ∈ Ft . Equation 6 is a general version of equation 2.

In classification problems, the target labels are discreet then
ξ is either 0 or 1. So that ∑i∈DBu P(B|xi) ≡ ∑i∈DB ξ u

i P(B|xi).
Similarly, in case of ∑i∈DB P(B|xi) = 0, we use the following
equation:

P(Fu
t |B) =

1
|Ft | f or u = 1, · · · , |Ft | (7)

The probabilities of target focal elements given a data element
based on a LDT with s consisting branches are evaluated by

P(Fu
t |x) =

s

∑
v=1

P(Fu
t |Bv)P(Bv|x) (8)

Thus, for a given x = 〈x1, · · · ,xn〉 to predict its target value
x̂t (i.e. xi → x̂t). We can obtain a series of probabilities on



target focal elements: P(F 1
t |x), · · · ,P(F |Ft |

t |x). The estimate
of xt , denoted x̂t , to be the expected value:

x̂t =
∫

Ωt

xt p(xt |x) dxt (9)

where:

p(xt |x) =
|Ft |
∑
u=1

p(xt |Fu
t ) P(Fu

t |x) (10)

and

p(xt |Fu
t ) =

mxt (F
u

t )∫
Ωt

mxt (Fu
t ) dxt

(11)

so that, we can obtain:

x̂t = ∑
u

P(Fu
t |x) E(xt |Fu

t ) (12)

where:

E(xt |Fu
t ) =

∫
Ωt

xt mxt (F
u

t ) dxt∫
Ωt

mxt (F
u

t ) dxt
(13)

where the process of calculating E(xt |Fu
t ) is also called de-

fuzzification in some other literatures.
The goal of tree-structured learning models is to make sub-

regions partitioned by branches be less “impure”, in terms of
the mixture of class labels, than the unpartitioned dataset. For
a particular branch, the most suitable free attribute for further
expanding (or partitioning), is the one by which the “pure-
ness” is maximumly increased with expanding. That corre-
sponds to selecting the attribute with maximum information
gain. The algorithm for developing linguistic decision trees
for prediction is same to LDTs for classification which is fully
described in [8], we won’t introduce it here due to the page
limitation. Similar like ID3, in developing the tree, the most
informative attribute will form the root of a linguistic decision
tree, and the tree will expand into branches associated with all
possible focal elements of this attribute. For each branch, the
free attribute with maximum information gain will be the next
node, from level to level, until the tree reaches the maximum
specified depth or some other criteria are met.

3.3 Forward branch merging

One of the inherent disadvantages for tree induction algo-
rithms is overfitting. There are many pruning algorithms were
proposed, a good review are given in [6]. Here we present
a different approach of using ‘merging’ instead of ‘pruning’
to generate compact trees. In this section, a branch merging
algorithm for the LDT model is discussed. The basic idea is
that, we employ breadth-first search in developing a LDT, at
each depth, the adjacent branches which give similar proba-
bilities on target focal elements are merged into one branch
according to a merging threshold:

Definition 4 (Merging Threshold) In a linguistic decision
tree, if the maximum difference between the probabilities of
target focal elements on two adjacent branches B1 and B2 is
less than or equal to a given merging threshold Tm, then the
two branches can be merged into one branch. Formally, if

Tm ≥ max
Ft∈Ft

(|Pr(Ft |B1)−Pr(Ft|B2)|) (14)

where Ft = {F1
t , · · · ,F |Ft |

t } are focal elements for the target
attribute, then B1 and B2 can be merged into one branch MB.

Definition 5 (Merged Branch) A merged branch MB with k
nodes is defined as

MB = 〈M1, · · · ,Mk〉
where M j = {F1

j , · · · ,Fw
j } is a set of focal elements such that

Fi
j is adjacent to Fi+1

j for i = 1, · · · ,w−1. The associate mass
for M j is given by

mx(M j) =
w

∑
i=1

mx(Fi
j ) (15)

where w is the number of merged focal elements for attribute
j.

Where ‘adjacent’ means the fuzzy labels which are defined
next to each other in a natural order. For the example,
{small} and {small, medium} are adjacent focal elements
while {small} and {medium} are not. The probability of a
merged branch given a data element x ∈ Ω1×, · · · ,×Ωn can
be evaluated by

P(MB|x) =
k

∏
r=1

mxr(Mr) =
k

∏
r=1

(
wr

∑
i=1

mxr(F
i
r )

)
(16)

where k is the length of the merged branch MB and w r for
r = 1, · · · ,k is the number of merged nodes of the attribute r.
Based on equations 2, 3, 5, 15 and 16 we use the following
equation to evaluate the probabilities on target focal elements
given a merged branch.

P(F j
t |MB) =

∑i∈DB ξ j
i P(MB|x)

∑i∈DB P(MB|x)
(17)

And, the following equation is used when doing classification
with a merged LDT with s′ branches:

P(F j
t |x) =

s′

∑
v=1

P(F j
t |MBv)P(MBv|x) (18)

When the merging algorithm is applied in learning a lin-
guistic decision tree, the adjacent branches meeting the merg-
ing criteria will be merged and re-evaluated according to equa-
tion 17. Then the adjacent branches after the first round of
merging will be examined in a further round of merging, un-
til all adjacent branches cannot be merged further. We then
proceed to the next depth. The merging is applied as the tree
develops from the root to the maximum depth and hence is
referred to as forward merging.

4 EXPERIMENTAL STUDIES

The measure defined here for evaluating the prediction perfor-
mance is Average Error (AVE), which scales the error accord-
ing to range of output (target attribute) space is used for evalu-
ating algorithms’ performance: Given output universe defined
by Ωt = [a,b] and a training set DB, AVE is the average mod-
ulus error taken as a percentage of the length of the output
universe, formally:

AVE = ∑i∈DB |x̂t(i)− xt(i)|
|DB|(b−a)

(19)



where |DB| represents the number of instances in DB. The
standard deviation across DB is given by

σE =

√
1

|DB| ∑
i∈DB

(εi −AVE)2 (20)

where:

εi =
|x̂t − xt |

b−a

In this section, the LDT results are compared with the results
of ε-SVR 1 Fuzzy Naive Bayes [10] and Fuzzy Semi-Naive
Bayes (FSNB) [10]. The parameter settings for other 3 mod-
els are based on the empirical research on these problems by
Randon [10].

4.1 Prediction of Sunspots

This problem contains data of sunspot numbers between the
years 1700-1979. For this experiment the data was organized
as described in [11] using a sliding window and the validation
set of 35 examples (1921-1955) was merged into the test set
of 24 examples (1956-1979). This is because a validation set
is not required in this framework. Hence, a training set of 209
examples (1712-1920) and a test set of 59 examples (1921-
1979) are used in this paper. The input attributes are x T−12 to
xT−1 (the data for previous 12 years) and the output (target)
attribute is xT , i.e. one-year-ahead.
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Figure 3: The prediction results obtained from LDT without merg-
ing, where the data on the left (1712-1921) are for training and the
right (1921-1079) are for test.

The result comparisons in the AVE measure are shown in
table 1, where the parameter setting for ε-SVR is as fol-
lows: σ = 3, ε = 0.05, C = 5 [10]. Results of LDT present
here are obtained from LDTs discretized by 4 fuzzy labels by
percentile-based method (both on input and output spaces) and
at the depth of 5. The comparison between the prediction data
and the original data are shown in figure 3, where the data
on the left (1712-1921) are for training data and the right are
(1921-1979) for test.

Table 1 also shows the results of LID3 by applying forward
branch merging where the merging threshold varies from 0.05
to 0.30. From the table, we can see that ε-SVR gives the best

1ε-Support Vector Regression system with a Gaussian kernel and an ε-
insensitive loss function. The SVR results present here are obtained by using
a Matlab package implemented by Gunn [3].

Table 1: Prediction results in AVE on the sunspot prediction prob-
lem.

Prediction Model AVE % σE(%) Size
Fuzzy Naive Bayes 13.0588 13.0213 -
FSNB 10.9064 9.5208 -
ε-SVR 8.9337 9.7766 -
LDT 8.6793 8.8876 5731
LDT (Tm = 0.05) 8.8925 8.9437 2285
LDT (Tm = 0.10) 8.9649 9.1994 1493
LDT (Tm = 0.15) 9.8419 10.1869 757
LDT (Tm = 0.20) 9.8341 10.7063 204
LDT (Tm = 0.25) 10.5858 10.3711 81
LDT (Tm = 0.30) 18.9539 19.1159 5

Table 2: Average errors with standard deviations on test set of the
flood forecasting problem.

Prediction Model AVE % σE(%) Size
Fuzzy Naive Bayes 2.9922 7.3017 -
FSNB 2.9219 7.1798 -
ε-SVR 3.3555 7.6602 -
LDT 2.5625 6.9160 2133
LDT (Tm = 0.05) 2.5596 6.8865 815
LDT (Tm = 0.10) 2.5576 6.1244 652
LDT (Tm = 0.15) 2.6523 6.9574 389
LDT (Tm = 0.20) 2.7932 6.9225 225
LDT (Tm = 0.25) 2.7935 6.9258 203
LDT (Tm = 0.30) 2.8227 7.0835 118
LDT (Tm = 0.35) 2.9368 7.5019 79
LDT (Tm = 0.40) 2.9769 7.7628 37

results and the LID3 gives the second best. If we increase the
merging threshold Tm, the size of LDT (i.e. the number of
branches) is reduced greatly while the error rate only changes
slightly. For example, compare Tm = 0 (no merging) and Tm =
0.25, the tree reduced about 98.6% in size and the error rate
only increases 1.91%.

4.2 Flood Forecasting

The database we shall investigate here describes the Bird
Creek river basin in Oklahoma, USA. The data was col-
lected to form part of a real-time hydrological model inter-
comparison exercise conducted in Vancouver, Canada in 1987
and reported by World Meteorological Organization (WMO)
in 1992. The database describing the Bird Creek catchment
area gives information on two attributes: the average rainfall
(U) given in mm, derived from 12 rainfall gauges situated in or
near the catchment area and the river’s stream flow (Y ) given
in m3/s, measured using a continuous stage recorder. Both
values are recorded in the database at 6 hour intervals. In this
paper only a subset of the original flood data is used. This is
comprised of 2090 training examples and 1030 examples for
test.

A Fuzzy Semi-Naive Bayes model is also used to study
this problem by Randon [10] with and without windowing
techniques. In order to make direct comparisons with other
river flow modelling techniques we shall initially use the same
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Figure 4: The stream flow prediction (upper figure) with a merged
LDT with Tm = 0.3 and the error are shown in the below figure.

training and test data as in previous studies. The rainfall val-
ues, 〈UT−2,UT−2,UT 〉 and stream flow value 〈YT−2, YT−1, YT 〉
are used to produce six steps ahead prediction on stream flow
value ŶT+6. The results obtained from LID3 are compared
with the results of Fuzzy Semi-Naive Bayes and ε-SVR. The
results in terms of average errors are shown in table 2, where
the results of ε-SVR are based on parameters: σ = 3, ε = 0.05
and C = 5. The LDT results are obtained based on the linguis-
tic translation by which each attribute is discretized uniformly
by 3 fuzzy labels and the LDT extends with the maximum
depth 6.

As we can see from table 2, LDT outperforms the other
models on this problem. However, the size of the LDT is
still be very large (2133 branches without merging). By
applying forward merging, the errors increase only slightly
while the number of branches are significantly reduced. With
Tm = 0.30, the LID3 still gives better accuracy to Fuzzy Semi-
Naive Bayes. However, the tree has only 108 branches and
comparing to LDT without merging, the tree size has been re-
duced nearly 94%. The performance on the test set can be seen
from figure 4. Although LID3 over-estimates at some peaks,
it still captures the original data well.

5 CONCLUSIONS

Linguistic decision tree is a classification model for its ad-
vantages of handling uncertainties and being transparent. In
this paper, a methodology of extending linguistic decision tree
from classification to prediction is proposed. We tested on two
benchmark problems: sunspot prediction and real-world flood
forecasting. By empirical studies, we show that LDT model
has equivalent prediction ability comparing to several state-
of-art prediction model such as ε-SVR and Fuzzy Semi-Naive
Bayes. More compact trees can also be obtained by applying
forward merging while the performances of the algorithm are

not significantly influenced with small merging thresholding.
However, we are not arguing that the LDT model is a best

algorithm in terms of accuracy. Although we cannot say LDT
model outperform others, we may say that LDT model has
equivalent prediction performance comparing to other predic-
tion algorithms mentioned in this paper. On the other hand,
LDT model has better transparency unlike other black-box
prediction models, a LDT can be interpreted as a set of lin-
guistic rules, which may provides the information about how
the predictions are made.
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