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Abstract:  
 Receiver Operating Characteristics (ROC) analysis was 

originated from signal detection theory and has been 
introduced to machine learning community in recent years to 
evaluate the algorithm performance under imprecise 
environment. ROC graphs have become increasingly popular 
in machine learning, because they offer a more robust 
framework for evaluating classifier performance than the 
traditional accuracy measure. In this paper, we investigate the 
relation between a probabilistic classifier and its 
corresponding predictor in a view of ROC analysis. A method 
of generating ROC curves for prediction (or regression) 
problems is proposed and some properties of ROC curves for 
prediction are discussed with examples. 
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1. Introduction 

Traditionally, the main criterion for evaluating the 
performance of a classifier is accuracy (percentage of test 
examples that are correctly classified) or error (percentage 
of misclassified examples). However, in many situations, 
not every misclassification has the same consequences 
when misclassification costs have to be taken into account. 
Recent study shows that the accuracy of a classifier is also 
influenced by the class distribution [7]. Receiver Operating 
Characteristics (ROC) analysis, which was originated from 
signal detection theory, has been introduced to evaluate 
machine learning algorithms [1, 2, 6, 7] and it has become 
increasingly popular in machine learning research. In 
addition to being a generally useful performance graphing 
method, they have properties that make them especially 
useful for domains with skewed class distribution and 
unequal classification error costs. For example, given a 
classifier which has accuracy of 80%. The accuracy doesn’t 
make sense without knowing the class distribution: If the 
database consists of 90% positive and 10% negative 
examples. We can do better simply by classifying all the 
data as positive that will give 90% accuracy. So, ROC 

analysis is not just about cost-sensitive learning, it 
considers the relative importance of negative vs. positive 
examples. This relative importance can be represented by a 
skew ratio by considering both costs and class distribution 
[3]. 

Many classifiers not only give discreet predicted 
classes but also the estimates of class membership 
probabilities (e.g., Naive Bayes). The former are referred to 
as discreet classifiers and the latter as probabilistic 
classifiers or rankers, because the membership probabilities 
can be used to rank instances from most to least likely 
positive. By setting a threshold, a rankers can act as a 
classifier. Area under the curve (AUC) of ROC is used to 
measure the quality of ranking for a probabilistic classifier 
[4, 8]. Ling et al. proved that AUC is statistically consistent 
and more discriminating than the accuracy measure [5]. So, 
it is fair to use AUC rather than accuracy to evaluate a 
learning algorithm. Currently, all the ROC analysis research 
are for classification problems. However, in many 
real-world applications, data ranging from financial 
analysis to weather forecasting are prediction problems. We 
are wondering if we can extend to the ROC analysis to 
predictions? This is the motivation of this research. Here in 
this paper, some initial investigations is presented where we 
only consider the predictors based on defuzzification with 
two fuzzy labels on probabilistic classifiers. 

This paper is organized as follows: we first introduce 
the basics of ROC analysis for classification in section 2. In 
section 3, the ROC analysis is extended to prediction 
problems and the method for plotting ROC curves is 
proposed. In the section 4, the method of calculating AUC 
values is proposed and some special properties of ROC 
curves for prediction are discussed with examples. 

2. ROC Analysis for Classification  

Traditionally, accuracy and error are widely used 
measures for evaluating performance of a classifier. Using 
accuracy as a performance measure assumes that the error 
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costs are equal and the class distribution is balanced. 
However, this is not realistic if we consider problems such 
as medical diagnosis or fraud detection. We begin by 
considering classification problems using only two classes 
(or binary classification problem). Usually, the instances are 
divided according to the following contingency table or 
confusion matrix: 

 

    
Figure 1. Confusion matrix for a binary (i.e., positive and 

negative) classification problem. 
 

   If the number of positives are negatives are denoted by 
P and N, respectively, the predicted positives and negatives 
are denoted by   and N , then, the classification accuracy 
is defined as: 

?P ?

   Accuracy = TP + TN
P + N

              (1) 

ROC analysis decomposes performance into true and false 
positive rates defined as follows: the true positive rate (TPR) 
of a classifier is: TPR = TP /P  and the false positive rate 
(FPR) of a classifier is: FPR = FP /N . If we plot FPR on 
the X axis and TPR on the Y axis. A single classification is 
then represented by a point in this 2D coordinate space 
which is referred to as ROC space. In the ROC space, the 
upper left point (0, 1) is most wanted because it gives 100% 
percent of true positives and zero false positives. It can be 
called as “ROC Heaven” and, correspondingly, the point (1, 
0) is the least wanted point that can be called “ROC Hell” 
[3]. The diagonal line represents a random classifier which 
always gives 50% of true positive rate and 50% false 
positive rate. Each discreet classifier can be presented by a 
single point according to its TPR and FPR in the ROC 
space. Different ROC profiles will be more or less desirable 
under different class distributions and different error cost 
functions. More details about basic ROC space properties 
are available in [3]. 

Consider a probabilistic classifier with two classes ‘+’ 
and ‘-’. We can sort the instances according to the 
probabilities of belonging to class +. Different classification 

 
Figure 2. ROC curves for the classifiers CLS1 and CLS2. 
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where we normally set T = 0.5 1  when we calculate 
accuracy for a probability estimation model. If we vary the 
value of T through [0, 1], it will result a continuous curve in 
ROC space which is referred to as a ROC curve. In another 
words, A classifier results in a ROC curve, which 
aggregates its behavior for all possible decision thresholds. 
The quality of the classifier can be measured by the area 
under the curve of ROC (AUC), which measures how well 
the classifier separates the two classes without reference to 
a decision threshold. In other words, AUC represents the 
quality of ranking of examples by this classifier. Given k 
instances, there are only k+1 possible thresholds. A 
practical method is as follows: (1) rank test instances on 
decreasing membership scores. (2) Starting in (0, 0), if the 
next instance in the ranking list is positive then move 1/P 
up, if it is negative then move 1/N to the right. Given the 
two classifiers CLS1 and CLS2 in table 2, the ROC curves 
drawn by the above method are shown in figure 2. 
According to Hand and Till [4], the AUC value for a binary 
classification problem with two classes {+, −} can be 
calculated by: 

AUC =
rii=1

P∑ − P(P +1) /2

PN
         (2) 

                                                           
1 The optimal threshold for a probabilistic classifier depends on the 

class distribution and misclassification costs. The membership scores are 
not calibrated estimate of probabilities in most cases [9]. Therefore, 
assigning T=0.5 (e.g., for Naïve Bayes classifier) is a misleading in many 
machine learning literatures.  
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Table 1. Two classifiers (CLS1 and CLS2) with the same 
accuracy but different AUC values. This table is inspired by 

a similar table in [5]. 

Examples x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
CLS1 - - - - + - + + + + 
ri for LCS1     5  7 8 9 10
CLS2 + - - - - + + - + + 
ri for LCS2 1     6 7  9 10

 
where P and N are the number of positive and negative  
examples, respectively. ri is the rank of ith positive example 
in the ranking list according to the probabilities of the class 
+. For example, the AUC values for classifier 1 and 2 listed 
in table 2 are: 

AUC(CLS1 ) = (5 + 7 + 8 + 9 +10) − 5 × (5 +1) /2
5 × 5

= 24
25

 

AUC(CLS2 ) = (1+ 6 + 7 + 9 +10) − 5 × (5 +1) /2
5 × 5

= 18
25

 

We may notice that both classifier 1 and 2 have the same 
accuracy 80% (8 of 10 examples are correctly classified) 
and thus they are equally good in accuracy. However, the 
intuition tells us that classifier 1 is better than classifier 2 
since classifier 1 gives a better overall ranking. This can be 
seen from AUC measure but not the accuracy measure. 
Ling et al. [5] mathematically proved that the AUC measure 
is consistent and more discriminating than the accuracy 
measure. The method for calculating AUC for multi-class 
problems is given in [4], however, in this paper, only 
two-class problems are considered. 
 

 
Figure 3. Different degrees of overlapping between two 
fuzzy labels that are used as class labels.  
 
3.  ROC Analysis for Prediction 
 
   Consider a prediction problem that the output space or 

target attribute t is numeric. For each instance x (a 
multidimensional vector, it also written as  in equations) 
to predict its target value t (i.e. x

x
i → ti). Suppose we 

discretize the output universe with m fuzzy sets: F1, . . . , Fm. 
We can consider each fuzzy set as a single class label that 
has weights denoted by and each instance can be mapped to 
a representati n as follows: o
          >→< mmi FFx ξξ :,...,: 11  
where,  

ξ i =1
i=1

m∑  

We then can use an arbitrary probabilistic classifier to 
obtain a series of conditional probabilities on target fuzzy 
sets given a test instance x: P(F1|x), …, P(Fm|x). The 
estimate of t, denoted  to be the expected value: ?t 

∫Ω= dtxttpt )|(ˆ                 (3) 

where: 

∑
=

=
m

j
jj xFPFtpxtp

1
)|()|()|(        (4) 

and 
      p(t | Fj ) =

Mt (Fj )
Mt (Fj )dt

Ω t
∫

             (5) 

where Mx(Fj) is the membership of x belonging to fuzzy set 
of labels Fj. So that we can obtain: 

       t          (6) ∑
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where the process of calculating E(xt|Fj) is also called 
defuzzification in some other literatures. 
From above we can see that, by fuzzifying the 
continuoustarget attribute t into intervals that could be 
considered as class labels, any probabilistic classifiers can 
be extended to a prediction model. However, we need to 
notice that the class labels not discreet but overlapped each 
other and there are many different degrees of overlapping. 
For example, figure 3 shows four different possible 
overlapping. In this paper, we only consider the simplest 
case that m = 2, where one fuzzy label is represented by − 
and the other by +. In the following paper, unless otherwise 
stated, we will use the fuzzy labels with 50% overlapping 
(figure 3-d), it satisfies: 

1)|()|(: =++−∀ ii xPxPi  
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Figure 4. An illustration of drawing ROC curve and AUC 

calculation by adding a new point. 
 
The basic difference between such predictors and normal 
probabilistic classifiers is that the class labels are overlapped 
each other. For a particular instance, it has original 
membership probabilities of positives from fuzzy 
discretization P(+|x) and predicted class probabilities 

(+|x?P 

?P 

i) from classifiers In the following context, unless 
otherwise stated, we will focus on the membership 
probabilities of positives and we write (+|x?P i) as pi and 

(+|xi) as ?p i . For example, given the original membership 
scores and predicted scores, how can we draw the ROC 
curve? A simple and practical method based on discreet class 
labels is proposed as follows: 
 

• Given a test set of size L, rank the instances on 
decreasing predicted membership scores of the 
‘positive’ class ?p , where i ∈ {1, 2, … ,L}. i

• TP0 = 0, FP0 = 0 
• for i = 1 : L, Do: 
    TPi = TPi−1 + pi/n+, FPi = FPi−1 + (1 − pi)/n− 
• Starting from (0, 0), for i = 1 : L, draw the curve by 

         joining (FPi−1, TPi−1) and (FPi, TPi) successively. 

 
Figure 5. ROC curves for a perfect-ranking predictor, a 

random predictor, and two predictors obtained by perfect 
ranking predictor corrupted by different levels of noise. 

 
where n+ is the sum of positive parts on all examples, it is 
obtained by: 

               (8) ∑ ∑
= =

+ =+=
L

i

L

i
ipipn

1 1
)()|(

Similarly, we can obtain: 

          n  − = p(i | −) = 1− p(i) =1− n+
i=1

L

∑
i=1

L

∑
Figure 5 shows a set ROC curves on a real-world prediction 
problem: the marked curve is a perfect ranking, which means 
that given a ranked list in a decreasing manner based on ?p  
(i.e.  ≥ . . . ≥ ), the relation p

i

1p̂ Lp̂ 1 ≥ . . . ≥ pL holds. The 
curves marked with α= 0.2 represents a perfect ranking 
predictor corrupted by a uniform distributed noise in the 
range of [0, 0.2], denoted by U[0, 0.2]. So that the predicted 
probabilities are: 

i∀   ε+= ii pp̂    ],0[ αε U∈  
The random classifier is a random guess that follows:  

i∀    ]1,0[ˆ Upi ∈
As we can see from those curves, they exhibit similar 
properties as with discreet labels, the only difference is that 
the maximum value for prediction is not 1. This will be 
discussed in details in the next section. 
 
4.  AUC Value for Prediction 
 

Figure 4 gives an illustration of drawing ROC curve for 
such prediction problems. We need to notice that the optimal 
point is not (1,0) for predictions (i.e. AUC value is always 
less than 1). The reason for this is because we use 
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overlapping fuzzy labels. ROC analysis reflects the 
separation of positive and negative examples by a classifier. 
In this case, no matter how good a classifier is, it still cannot 
completely separate the positives and negatives because they 
are overlapped to each other. The different overlapping 
degrees will result in different maximum AUC values. 
Figure 6 depicts the ROC curves with maximum AUC 
values on the fuzzy labels with different overlapping degrees 
shown in figure 3. In the legend, the AUC values that are 
calculated by the method that will be discussed in the 
following part of this section.  
   Consider the ranking list on decreasing membership 
scores in the way we draw the ROC curves. The first 
example of the ranking list is the one with the highest 
predicted score with original score of p1. By adding this 
example to the ROC space, the area under the ROC curve is a 
triangle with side lengths of (1−p1)/n− and p1/n+, 
respectively (see figure 4). So that 
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            (9) 

By adding a new example with score extended and a new 
area in trapezoidal the current AUC becomes: 
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Similarly, by adding the third point: 
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By successively adding the kth example (k ≠ 1), we can 
obtain: 
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Equation 10 can be rearranged and the AUC value for 
prediction on a test set with L examples is: 
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where, 
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Figure 6. ROC curve with maximum AUC values given 

fuzzy labels on different degrees of overlapping in figure 3. 
 

Consider the equation 11, the first term pi(1− pi)i=1

L∑  is 

invariant to different rankings. Now we only consider the 
term C to investigate the relation between AUC value and 
example ranking. Term C can be separated into two terms 
Ai = 1 − pi and Bi = (1− p j )j=1

i−1∑  so that C = AiBii∑ . 

Suppose we have the following ranking of examples 
according to the B terms: 
      Rp :  …  … 1 − pk, 1 − pk+1 …  … 
if we swap the positions of these two examples to: 
      Rx :  …  … 1 − pk+1, 1 − pk …  … 
Suppose pk ≥ pk+1, such swapping is referred to as bad 
swapping, because Rp is more desirable than Rx for a better 
ranking. The swapping will result in a change in AUC values, 
if we define: 
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Table 2. AUC vales with different rankings by exchanging 
examples from the perfect ranking, where ni=1-pi. 

 n1 n2 n3 n4 n5 
−+

+−
nn
pp kk 1 AUC 

Rp 0.2 0.4 0.6 0.8 1.0 0 0.8333
Rx1 0.2 0.4 0.8 0.6 1.0 0.0333 0.8000
Rx2 0.2 0.8 0.4 0.6 1.0 0.0667 0.7333
Rx3 0.2 0.8 0.4 1.0 0.6 0.0667 0.6667
 
The latter terms for C(Rp) and C(Rx) have identical values. 
Therefore, according to equation 11, we can calculate the 
change of AUC values by exchange these two examples as 
follows: 

)]()([1)()( xpxp RCRC
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RAUCRAUC −=−
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where the equality holds when pk = pk+1. If we suppose pk ≤ 
pk+1, such a swapping then becomes a good swapping, the 
AUC values will be increased by the same value. For 
example, we start from a perfect ranking Rp shown in table 4. 
We can obtain:   
    n− = ni = 0.2 + 0.4 + 0.6 + 0.8 +1= 3

i∑
and n+ = 5−3 = 2. By swapping 0.8 and 0.6, we obtain the 
change in AUC as follows: 

  0333.0
32

)8.01()6.01(1 =
×

−−−=−
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+

nn
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So that the new AUC value for the rearranged list is  
   8000.00333.0)()( 1 =−= px RAUCRAUC
Based on the new ranking list , swap 0.8 and 0.4, we 
then can obtain a new ranking list , such that: 

1xR

R
2x

  0667.0
32

)8.01()4.01(1 =
×

−−−=
−

−+

+

nn
pp kk  

   7333.00667.0)()(
12

=−= xx RAUCRAUC
Similarly, we can obtain another bad ranking list  by 
such swapping (i.e. bad swapping) and the AUC values will 
keep decreasing. 

3xR

 
5.  Conclusions 
 
   In this paper, we extended ROC analysis that is 
commonly used in classification to prediction. A method of 
drawing ROC curves for prediction is proposed and some 
of important properties of such ROC are discussed. By 
introducing the method for calculating AUC values for 
prediction, we also investigate the relation between the 

AUC values and the ranking of examples. In particular, a 
quantitative analysis of AUC value by swapping two 
neighboring instances is given. However, in this paper, we 
only consider a very simple case that the predictor is 
obtained by defuzzification of probabilistic classifiers. The 
future research focus on extending this framework to 
multi-classes (more than 2 fuzzy labels) and study the 
relation between AUC and some other measures used in 
prediction such as mean squared error and average error. 
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