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Abstract

Tree induction is one of the most effective and widely
used models in classification. Unfortunately, decision
trees such as C4.5 [9] have been found to provide poor
probability estimates. By the empirical studies, Provost
and Domingos [6] found that Probability Estimation Trees
(PETs) give a fairly good probability estimation. However,
different from normal decision trees, pruning reduces the
performances of PETs. In order to get a good probability
estimation, we usually need large trees which are not good
in terms of the model transparency. In this paper, two
hybrid models by combining the Naive Bayes classifier and
PETs are proposed in order to build a model with good
performance without losing too much transparency. The
first model use Naive Bayes estimation given a PET and
the second model use a group of small-sized PETs as Naive
Bayes estimators. Empirical studies show that the first
model outperforms the PET model at shallow depth and the
second model is equivalent to Naive Bayes and PET.

Keywords:
Probability Estimation Tree, Decision Tree, Naive Bayes,

Classification, Hybrid Classification Model.

1 Introduction

Tree induction algorithms were received a great deal
of attention because of their simplicity and effectiveness.
There are many decision tree models or tree based mod-
els have been proposed. From early discrete decision trees
such as ID3 [8] and C4.5 [9] to to a variety types of regres-
sion trees. Trees that estimate the probability of class mem-
bership are also referred to as Probability Estimation Trees
(PETs) [6], where probability of a particular class given a
branch is calculated by the proportion of data belonging to
this class to all the data covered by the branch.

Like a decision tree, a PET can be represented as a set

of rules and hence provides a high level transparency. How-
ever, for some complex problems, good probability estima-
tions can only be obtained by large PETs, which are not
good in terms of transparency. In such cases, how can
we build a model which has a good probability estimation
with compact PETs (i.e., PETs with shallow depths and less
number of branches)? This question motivates the research
presented in this paper.

Naive Bayes is a well known and much studied algo-
rithm in machine learning. It is a simple, effective and effi-
cient learning method. Although Naive Bayes classification
makes an unrealistic assumption that the values of the at-
tributes of an instance are independent given the class of
the instance, this model is remarkably successful in prac-
tice. In this paper, the Naive Bayes classifer is used to build
new hybrid models by combining it with PETs.

This paper is organized as follows. Section 2 and 3 intro-
duce the probability estmation tree model and Naive Bayes,
respectively. In section 4, we described the first new hy-
brid by combining the Naive Bayes model and probability
estimation trees. In section 5, another new hybrid model of
using a group PETs as Naive Bayes estimators is proposed.
In section 6, we test the new models by using a series of
UCI datasets and the conclusions are given in section 7.

2 Probability Estimation Trees

Decision Tree, more properly a classification tree1, is
used to learn a classification function which predicts the
value of a target attribute (class attribute) given the val-
ues of the independent (input) attributes by a tree-structured
model. A node with no split is called a leaf, which is asso-
ciated with a particular class label. A new unlabeled data
is classified by determining which leaf it leads to. Decision
tree induction attracts a great attention for its simplicity and

1A decision tree with a range of discrete (symbolic) class labels is
called a classification tree, whereas a decision tree’s output with a range
of continuous (numeric) values is called a regression tree or a prediction
tree.
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effectiveness. Algorithms such as ID3 [8], C4.5 [9] have
been well-known not only in machine learning and but also
other scientific communities as well. Traditionally, this set-
ting was sufficient for most of the classification problems
and applications. However, more and more applications re-
quire some kind of reliability, liklihood or numeric assess-
ment of the quality of each classfication. In other words, we
do not only want that the model predicts a class value for
each example but also that it can be given an estimate of the
reliability of each prediction. Such classifiers are usually
called soft classifiers [4]. The most general presentation of
a soft classifier is a probability estimator, i.e. a model that
estimates the probability of a particular class given an un-
labeled example. A decision tree classifier is defined as a
decision tree with an associated labelling of the leaves with
classes. A probability estimation tree (PET) is a decision
tree where each leaf is assigned a probability distribution
over classes. These probability estimates can for instance
be relative frequencies [4].

Given a data set contains N instances or examples: D =
{x1, . . . ,xN}, where each instance is determined by n at-
tributes, i.e., x = 〈x1, . . . , xn〉. Given a set of classes
C = {C1, · · · , Cm}, each instance is labelled with a partic-
ular class Ck, formally: x → Ck where Ck ∈ C. A branch
B of a PET is defined by B = {x1 = X1, . . . , xm = Xm}
where Xi is a value of the attribute xi. Given the training
dataset D, the class probability of Ck given a branch B is
calculated by the proportion of data belonging to Ck to all
the data covered by B:

P (Ck|B) =

∑
(i:xi∈B∧xi→Ck) xi∑

(i:xi∈B) xi
(1)

where x ∈ B represents that the data element x is covered
by B. In decision tree learning, a decision tree may not con-
tain all the attributes of the given training data D. Given a
new example x, it is classified by a trained PET T as fol-
lows:

P (Ck|x) =
∑

j∈|T |
P (Ck|Bj)P (Bj |x) (2)

where |T | is the number of branches of the tree T .
P (Bj |x) = 1 if x is covered by branch Bj . Otherwise,
P (Bj |x) = 0. For continuous attributes, a percentile-based
discretization method is used. By this method, we simply
partition the continuous universe into a fixed number of in-
tervals based on the data distribution in order that each in-
terval covers approximately the same number of data ele-
ments.

3 Naive Bayes Classification

So-called “naive” Bayes classification is a method of su-
pervised learning if the attributes are conditionally indepen-
dent given the classes. Although this assumption is almost

always violated in practice, Naive Bayesian learning is re-
markably effective in practice [2]. Given a test instance is
presented, the learner is asked to predict its class according
to the evidence provided by the training data. We define
c as a random varibale denoting the class of an instance:
x = 〈x1, . . . , xn〉 as a vector of variables denoting the ob-
served attribute values. The expected classification error
can be minimized by choosing argmaxc(P (c = C|x)), ac-
cording to Bayes’s theorem:

P (H|D) =
P (D|H)
H (3)

Given a particular class Ck ∈ C, where C represents the set
of classes, we can obtain:

P (Ck|x) =
P (x|Ck)P (Ck)

P (x)
(4)

Since the denominator in eq. 4 is invariant across classes,
we can consider it as a normalization parameter. So, we
obtain:

P (Ck|x) ∝ P (x|Ck)P (Ck) (5)

Now suppose we assume for each variable xj that its out-
come is independent of the outcome of all other variables
given class Ck. In this case we can obtain the so-called
naive Bayes classifier as follows:

P (Ck|x) ∝
n∏

j=1

P (xj |Ck)P (Ck) (6)

where P (xj |Ck) is often called the likelihood of the data
xj given Ck. For a qualitative attribute, it can be esti-
mated from corresponding frequencies. For a quantitative
or continuous attribute, either probability density estima-
tion or discretization can be employed to estimate its prob-
abilities. Under probability density estimation, if the as-
sumed density is not a proper estimate of the true den-
sity, the Naive-Bayes classification accuracy tends to de-
grade. Yang and Webb [10] argue that as long as the at-
tribute independence assumption holds and discretization
satisfies P (c = Ck|x∗ = X∗) = P (c = Ck|x = X)
(where instance X∗

i is the discretized version of instance x),
discretization will result in Naive-Bayes classifiers deliver-
ing probability estimates directly proportional to those that
would be obtained if the correct probability density func-
tion were employed. This is also the reason why we use the
percentile-based discretization for continuous attributes.

4 Naive Bayes Estimation Given a PET

Given a probability estimation tree T which is learnt
from D. According to the Bayesian theorem: A data ele-
ment x = 〈x1, . . . , xn〉 can be classified by:
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P (Ck|x, T ) ∝ P (x|Ck, T )P (Ck|T ) (7)

We can then divide the attributes into 2 disjoint groups de-
noted by xT = {x1, · · · , xm} and xB = {xm+1, · · · , xn},
respectively. xT is the vector of the variables that are con-
tained in the given tree T and the rest variables are con-
tained in xB . Under the independence assumption, we ob-
tain:

P (x|Ck, T ) = P (xT |Ck, T )P (xB |Ck, T ) (8)

Because xB is independent of the given decision tree T . If
we assume the variables in xB are independent each other
given a particular class, we can obtain:

P (xB |Ck, T ) = P (xB |Ck) =
∏

j∈xB

P (xj |Ck) (9)

Now consider xT . According to the Bayes theorem,

P (xT |Ck, T ) =
P (Ck|xT , T )P (xT |T )

P (Ck|T )
(10)

Combine eq. 8, 9 and 10:

P (x|Ck, T ) =
P (Ck|xT , T )P (xT |T )

P (Ck|T )

∏

j∈xB

P (xl|Ck)

(11)
Combine eq. 7 and 11:

P (Ck|x, T ) ∝ P (Ck|xT , T )P (xT |T )
∏

j∈xB

P (xj |Ck)

(12)
Since P (xT |T ) is independent from Ck, so that:

P (Ck|x, T ) ∝ P (Ck|xT , T )
∏

j∈xB

P (xj |Ck) (13)

where P (xj |Ck) is evaluated by the frequency of xj = Xj

in all the data covered by Ck and P (Ck|xT , T ) is the just
the class probabilities associated to each branch of the given
tree T which is evaluated by eq. 2.

The basic idea of using Naive Bayes estimation given
a PET is to use the PET as one estimator and the rest of
the attributes as other independent estimators. Consider the
two extreme cases for eq. 13. If all the attributes are used in
building the tree (i.e. xT = x), the probability estimations
are from the tree only, that is:

P (Ck|x, T ) ∝ P (Ck|xT , T )

If none of the attributes are used in developing the tree (i.e.
x = xB), the probability estimation will become:

P (Ck|x, T ) ∝
∏

j∈xB

P (xj |Ck)

which is simply a Naive Bayes classifier. If we extend this
idea, we use a set of small-sized LDTs as estimators, we
then have the second hybird model which is described in
the next section.

5 Naive Bayes Estimation From a Set of Trees

Given a training dataset, a small-sized tree (usually the
depth is less than 3) can be learnt based on the method we
discussed in section 4. Then we learn another tree with the
same size based on the rest of the attributes, i.e., the at-
tributes which have not been used in previous trees. Suc-
cessively, a set of trees can be built from training set. If
we denote the trees by T = 〈T1, . . . , TW 〉, for each tree
Tw, the set of attributes xTw

are exclusive each other for
w = 1, . . . ,W . For a given unclassified data element x,
we can partition it into W group of disjoint set of attributes
〈xT1 , . . . ,xTW

〉. If we assume:

P (Ck|x) = P (Ck|xT1 , . . . ,xTW ) ≈ P (Ck|T1, . . . , TW )
(14)

Which means: the class probability given a vector of vari-
ables can be estimated by the product of class probabilities
of a set of disjoint trees (i.e., the attributes for building these
trees are disjoint groups). Then, according to the Bayesian
theorem:

P (Ck|T1, . . . , TW ) =
P (T1, . . . , TW |Ck)P (Ck)

P (T1, . . . , TW )
(15)

Since we assume the trees are built independently and we
assume the attributes are independent to each other. So that:

P (T1, . . . , TW |Ck) =
W∏

w=1

P (Tw|Ck) (16)

For a particular tree Tw for w = 1, . . . , W , we have

P (Tw|Ck) =
P (Ck|Tw)P (Tw)

P (Ck)
(17)

So that,

W∏
w=1

P (Tw|Ck) =
∏W

w=1 P (Ck|Tw)
∏W

i=1 P (Tw)
P (Ck)W

(18)

Combining eq. 15, 16 and 18 gives

P (Ck|T ) ∝
∏W

w=1 P (Ck|Tw)
∏W

w=1 P (Tw)
P (Ck)W−1

(19)

Since
∏W

w=1 P (Tw) is independent from Ck, we finally ob-
tain:

P (Ck|T ) ∝
∏W

w=1 P (Ck|Tw)
P (Ck)W−1

(20)

where P (Ck|Tw) is evaluated according to eq. 2. The depth
of the disjointed trees are predefined with a small number.
E.g., if the depth is 2: given the training data, we selected
two most discriminate attributes to build a tree. Then, we
select the other two from the remaining attributes to build
the 2nd tree, successively, till all the attributes have been
used.
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Table 1. Descriptions of the datasets used in
experiments. They are taken from the UCI [1]
Machine Learning Repository. Num: Numeric
attributes, Nom: Nominal attributes.

Dataset Class Size Missing Num. of Attri.
Values Num. Nom.

Ecoli 8 336 no 7 1
Glass 6 214 no 9 0
Heptitis 2 155 yes 6 13
Ionosphere 2 351 no 34 0
Iris 3 150 no 4 0
Liver 2 345 no 6 0
Pima 2 768 no 8 0
Wine 3 178 no 14 0
Wis. Cancer 2 699 no 9 0

6 Experimental Studies

We evaluated the PET model, Naive Bayes and two new
proposed hybrid models: single PET with Bayesian estima-
tion (denoted by BPET) and Bayesian estimation with a set
of trees (denoted by FPET - namely, a forest of PETs) on
9 datasets taken from the UCI Machine Learning reposi-
tory [1]. Table 1 shows the datasets, the number of classes,
the number of instances and the number of attributes. Un-
less otherwise stated, attributes are discretized by 3 intervals
based on the percentile-based discretization (or equal-point
discretization, each interval approximately covers the same
number of points. See section 2), and classes are evenly
split into two sub-datasets, one half for training and the
other half for testing, this is referred to as 50-50 split exper-
iment. We first compare the performances of the BPET and
PET model. For each dataset, we ran 50-50 random split ex-
periment for 10 times and the average test accuracies with
standard deviations are shown against depths of the trees are
shown in figures 1 and 2. The results of Naive Bayes and
the best resutls of PET, BPET and FPET are shown in table
2, where ‘Depth’ for PET, BPET and FPET represents the
depth at which the best results were obtained.

From all the figures, we can see that BPET model gen-
erally peroforms better at the shallow depths than the PET
model. However, with the increasing of the depth, the pe-
formance for BPET model keeps same or decreasing, while
the accuracy curves for PETs go upward. For datasets Ecoli,
Glass, Ionosphere, Live, Wine and Wisconsin-Cancer, the
BPET model performs better at most of depths. For Hepti-
tis, the differences are insignificant at all depths. For Iris
and Pima, the PET model even performs better than the
BPET model in most the depths but the differences are not

Table 3. Result comparisons at the depth 2
based on t-test with 90% confidence, where
‘
√

’ represents significant better, ‘−’ equiva-
lence and ‘×’ significant worse.

Database BPET BPET FPET FPET
vs NB vs PET vs NB vs PET

Ecoli − √ − √
Glass

√ √ × −
Heptitis − − − −
Iono. − − √ −
Iris − − − −
Liver − − − ×
Pima − × − ×
Wine − √ − √
Wis. Cancer − √ √ √

significant.
We performed t-tests with a confidence level of 90% 2 to

compare the models at depth 2 (except for the Naive Bayes
model) and the results are shown in table 3. We can see that
the BPET model performs better than the PET model and
it has equivalent performance comparing to Naive Bayes.
The FPET model is equivalent to the PET model and Naive
Bayes. However, the computational complexity is much
larger than Naive Bayes.

From figures 1 and 2, we found that most best results for
BPET are obtained at shallow depths, but for PETs the best
results are always obtained with deep depths. So, we can
conclude that BPET model is more efficient than PET. Com-
pare to the BPET model, the FPET model performs relative
worse and less efficient, the reasons are probably because
that small-trees are not good estimators. But this still needs
more further investigation. In summary, the BPET model
outperforms PET at shallow depths and has equivalent per-
formance to PET in general. In the comparisons between
FPET and PET, due to the limited number of test sets, at
least we can say they are equivalent instead of which one is
better than another.

7 Conclusions

In this paper, we propsed two hybrid models by combin-
ing Naive Bayes classifier and probability estimation trees.
Through experimental studies, we found that the BPET (the
Naive Bayes estimation model given a PET) model outper-

2We generally believe that the confidence level of 90 % is enough to be
significant for comparisons among different learning models given these
relatively simple data sets.
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Table 2. Experimental results on 9 UCI datasets: average accuracy with standard deviation from 10
runs of random 50-50 split experiments.

Naive Bayes PET BPET FPET
Data Accuracy Accuracy Depth Accuracy Depth Accuracy Depth
Ecoli 78.29±2.29 73.76±4.52 6 79.24±1.88 1 80.18±3.45 1
Glass 57.06±5.22 52.20±3.19 9 60.92±5.92 4 50.46±3.21 2
Hep. 80.64±2.38 80.38±3.42 4 82.05±2.34 2 80.64±3.11 1

Ionosphere 83.30±3.50 82.39±2.32 3 85.28±2.07 3 87.44±3.83 2
Iris 92.53±2.96 94.93±2.07 2 92.53±3.57 1 93.07±2.65 1

Liver 63.24±2.42 61.39±3.71 4 63.24±3.36 1 65.20±2.69 2
Pima 72.06±2.86 73.52±2.62 2 71.48±2.52 1 70.36±1.13 1
Wine 94.33±3.61 87.22±2.41 2 94.22±3.66 1 95.89±3.06 1

Wis. Cancer 96.63±0.40 94.51±1.16 3 96.54±0.39 1 98.00±1.09 2
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Figure 1. Results for single PET with Naive Bayes estimation: average accuracy with standard devi-
ation on each dataset against the depth of the tree. Datasets: Ecoli, Glass, Ionosphere, Liver, Wine
and Wisconsin-Cancer.
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Figure 2. Results for single PET with Naive Bayes estimation: average accuracy with standard devi-
ation on each dataset against the depth of the tree. Datasets: Heptitis, Iris and Pima.

forms the probability estimation tree model at shallow tree
depths. Comparing to Naive Bayes, BPET has the equiva-
lent performance. However, the transparency is greatly im-
proved since Naive Bayes is a pure black-box model. The
FPET (using a set of small-size PETs as Bayesian estima-
tors) model has the equivalent performance comparing to
Naive Bayes classifier PETs.

In this paper, the continuous attributes are arbitrarily dis-
cretized by predefined number of discrete intervals. How-
ever, we used the same discretization for all the models for
comparisons. We think that it is fair for studying the rela-
tive performance among these models. If we use fuzzy la-
bels for discretization, PETs then become fuzzy probability
estimation trees. More research about fuzzy probability es-
timation trees can be found in [7]. Further research focus on
investigating the reasons that FPETs are not good Bayesian
estimators and testing on more datasets.
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