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1 Introduction

Vague or imprecise concepts are fundamental to natural language. Human beings
are constantly using imprecise language to communicate each other. We usually say
‘John is tall and strong’ but not ‘John is exactly 1.85 meters in height and he can
lift 100kg weights’. Humans have a remarkable capability to perform a wide variety
of physical and mental tasks without any measurements. This capability partitionsof
objects into granules, with a granule being a clump of objects drawn together by
indistinguishability, similarity, proximity or function [8]. We will focus on develop-
ing an understanding of how we can use vague concepts to convey information and
meaning as part of a general strategy for practical reasoning and decision making.

We may notice that labels are used in natural language to describe what we see,
hear and feel. Such labels may have different degrees of vagueness. For example,
when we say Mary is young and she is female, the label young is more vague than
the label female because people may have more widely different opinions on being
young than being female. For a particular concept, there could be more than one
label that is appropriate for describing this concept, and some labels could be more
appropriate than others. A random set framework, Label Semantics, was proposed
to interpret these facts [3]. In such a framework, linguistic expressions or labels such
as small, medium and large are used for modelling. These labels are usually de-
fined by overlapping fuzzy sets which are used to cover the universes of continuous
variables. Different from Computing with Words [9], fuzzy labels are usually pre-
defined and used for building intelligent systems such as decision tree [4, 5], naive
Bayes learning [7] and rule induction systems [6] without involving the computing
of semantic meanings of these labels.

In this paper, we extended the label semantics framework with high level fuzzy
labels. In previous research of label semantics, fuzzy labels are used to describe a
numerical data element and the corresponding appropriateness degree for using a
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particular fuzzy label is just the membership of this data element belonging to the
fuzzy label. Due to the vagueness and impreciseness of the real-world, numerical
values are not always available. Here, we extend the label semantics framework to
use higher level labels to describe some vague concepts which are also defined by
intervals or fuzzy sets. The rest of the paper is structured as follows. Section 2 intro-
duces the label semantics framework, based on which, the idea of high level fuzzy
labels is disussed and supported with an example in section 3.

2 Label Semantics For Uncertainty Modeling

Label semantics is a methodology of using linguistic expressions or fuzzy labels to
describe numerical values. For a variable x into a domain of discourse Ω we identify
a finite set of fuzzy labels L = {L1, · · · ,Ln} with which to label the values of x. Then
for a specific value x ∈Ω an individual I identifies a subset of L , denoted DI

x to stand
for the description of x given by I, as the set of labels with which it is appropriate
to label x. If we allow I to vary across a population V with prior distribution PV ,
then DI

x will also vary and generate a random set denoted Dx into the power set of
L denoted by S . We can view the random set Dx as a description of the variable
x in terms of the labels in L . The frequency of occurrence of a particular label, say
S, for Dx across the population then gives a distribution on Dx referred to as a mass
assignment on labels2. More formally,

Definition 1 (Label Description) For x ∈Ω the label description of x is a ran-
dom set from V into the power set of L , denoted Dx, with associated distrib-
ution mx, which is referred to as mass assignment:

∀S ⊆ L , mx(S) = PV ({I ∈ V |DI
x = S}) (1)

where mx(S) is called the mass associated with a set of labels S and
∑

S⊆L

mx(S) = 1 (2)

Intuitively mass assignment is a distribution on appropriate label sets and
mx(S) quantifies the evidence that S is the set of appropriate labels for x.

For example, an expression such as ‘the score on a dice is small ’, as asserted
by individual I, is interpreted to mean DI

SCORE = {small}, where SCORE denotes the
value of the score given by a single throw of a particular dice. When I varies across a
population V , different sets of labels could be given to describe the variable SCORE,
so that we obtain the random set of DSCORE into the power set of L .

2 Since S is the power set of L, the logical representation S ∈ S can be written as S ⊆ L .
The latter representation will be used through out this thesis. For example, given L =
{L1,L2}, we can obtain S = { /0,{L1},{L2},{L1,L2}}. For every element in S : S ∈ S ,
the relation S ⊆ L will hold.
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In this framework, appropriateness degrees are used to evaluate how appropri-
ate a label is for describing a particular value of variable x. Simply, given a particular
value α of variable x, the appropriateness degree for labeling this value with the label
L, which is defined by fuzzy set F , is the membership value of α in F . The reason
we use the new term ‘appropriateness degrees’ is partly because it more accurately
reflects the underlying semantics and partly to highlight the quite distinct calculus
based on this framework [3]. This definition provides a relationship between mass
assignments and appropriateness degrees.

Definition 2 (Appropriateness Degrees)

∀x ∈Ω , ∀L ∈ L µL(x) =
∑

S⊆L :L∈S

mx(S)

For example, given a set of labels defined on the temperature outside: LTemp =
{low, medium, high}. Suppose 3 of 10 people agree that ‘medium is the only appro-
priate label for the temperature of 15◦ and 7 agree ‘both low and medium are appro-
priate labels’. According to def. 1, the mass assignment for 15◦ is m15(medium) =
0.3, and m15(low, medium) = 0.7 or formally:

m15 = {medium} : 0.3, {low,medium} : 0.7

More details about the theory of mass assignment can be found in [1]. In this
example, we have that the appropriateness of medium as a description of 15◦ is
µmedium(15)= 0.7+0.3 = 1, and that of low is µlow(15) = 0.7.

It is certainly true that a mass assignment on Dx determines a unique appropri-
ateness degree for µL for any L ∈ L , but generally the converse does not hold. For
example, given L = {L1,L2,L3} and µL1 = 0.3 and µL2 = 1. We could obtain an
infinite family of mass assignments:

{L1,L2} : α, {L2} : β , {L2,L3} : 0.7−β , {L1,L2,L3} : 0.3−α

for any α and β satisfying: 0 ≤ α ≤ 0.3, 0 ≤ β ≤ 0.7. Hence, the first assumption
we make is that the mass assignment mx are consonant and this allows us to determine
mx uniquely from the appropriateness degrees on labels as follows:

Definition 3 (Consonant Mass Assignments on Labels) Let {β1, · · · ,βk} =
{µL(x)|L ∈ L ,µL(x) > 0} ordered such that βt > βt+1 for t = 1,2, · · · ,k−1 then:

mx = Mt : βt −βt−1, for t = 1,2, · · · ,k−1,

Mk : βk, M0 : 1−β1

where M0 = /0 and Mt = {L ∈ L |µL(x) ≥ βt} for t = 1,2 . . . ,k.

For the previous example, given µL1(x) = 0.3 and µL2(x) = 1, we can calculate
the consonant mass assignments as follows: The appropriateness degrees are ordered
as {β1,β2} = {1,0.3} and M1 = {L2}, M2 = {L1,L2}. We then can obtain
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mx = {L2} : β1 −β2,{L1,L2} : β2 = {L2} : 0.7,{L1,L2} : 0.3

Because the appropriateness degrees are sorted in def. 3 the resulting mass assign-
ments are “nested”. Clearly then, there is a unique consonant mapping to mass as-
signments for a given set of appropriateness degree values. The justification of the
consonance assumption can be found in [1, 3]. Notice that in some cases we may
have non-zero mass associated with the empty set This means that some voters be-
lieve that x cannot be described by any labels in L . For example, if we are given
µL1(x) = 0.3 and µL2(x) = 0.8, then the corresponding mass assignment is:

{L2} : 0.5,{L1,L2} : 0.3, /0 : 0.2

where the associated mass for the empty set is obtained by 1−β1 = 0.2.

3 High Level Label Description

In this section, we will consider how to use a high level fuzzy label to describe
another fuzzy label. Here the term high level does not mean a hieracrhial structure.
We will actually consider two set of fuzzy labels which are independently defined
on the same universe. If the cardinality of a set of labels L is denoted by |L |. We
then can say L1 higher level labels of L2 if L1 < L2. We will acutally consider
the methodology of using one set of fuzzy labels to represent the other set of fuzzy
labels.

For example, a fuzzy concept about_m is defined by an interval on [a, b] (see
the left-hand side figure of Fig. 1), so that the appropriateness degree of using fuzzy
label small to label about_m is:

µsmall(about_m) =
1

b−a

∫ b

a
µsmall(u)du (3)

If the vagueness of the concept about_m depends on the interval denoted by δ where
the length of the interval |δ | = b−a. We then can obtain:

µsmall(about_m) =
1
|δ |

∫

u∈δ
µsmall(u)du (4)

usmall(x) usmall(x)

uabout_m(x)

small

delta

 k u ma b

about_m small

u    m b

about_m

a

Fig. 1. The appropriateness degree of using small to label vague concept about_m is defined
by the ratio of the area covered by both labels to the area covered by about_m only.
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If about_m is defined by other fuzzy labels rather than an interval, for example, a
triangular fuzzy set (e.g., the right-hand side figure of Fig. 1). How can we define the
appropriateness degrees?

We begin by considering a data element x ∈ [a,b], the function µabout_m(x) rep-
resents the degree of x belonging to the fuzzy label F . Function µsmall(x) defines the
appropriateness degrees of using label small to describe x 3. We essentially hope to
obtain the appropriateness degrees of using small to label about_m. We then con-
sider the each elements belonging to about_m. If µabout_m(x) = 1, which means x is
absolutely belonging to about_m, then the appropriateness degree is just µsmall(x).
However, if µabout_m < µsmall(x), we can only say it is belonging to about_m in cer-
tain degrees. Logically, fuzzy operation AND is used, and in practical calculation,
the min(·) function is employed. The appropriateness is then defined by:

µsmall(about_m) =

∫

u∈δ min(µsmall(u),µabout_m(u))du
∫

u′∈δ µabout_m(u′)du′ (5)

where function min(x,y) returns the minimum value between x and y. Equation 4 is
a special case of equation 5 where the following equations always hold:

µsmall(u) = min(µsmall(u),µabout_m(u))

|δ | =
∫

u∈δ
µabout_m(u)du

Definition 4 Given a vague concept (or a fuzzy label) F and a set of labels
L = {L1, . . . ,Lm} defined on a continuous universe Ω . The appropriateness
degrees of using label L (L ∈ L ) to describe F is:

µL(F) =

∫

u∈δ min(µL(u),µF(u))du
∫

u′∈δ µF(u′)du′ (6)

where δ is the universe covered by fuzzy label F.

Given appropriateness degrees, the mass assignment can be obtained from the appro-
priateness degrees by the consonance assumption. Equation 5 is a general form for
all kinds of fuzzy sets which are not limited to an interval or a triangular fuzzy sets.

Example 1. Figure 1 gives a set of isosceles triangular fuzzy labels F1, . . . ,F8 and
two high level fuzzy label small and large defined on the same universe. The mem-
bership functions (the non-zero part) for F5, F6 and small are defined as follows:

PS → y =
5
2

x−3, PT → y = −5
2

x+5

QR → y =
5
2
(x−0.4)−3, QU → y = −5

2
(x−0.4)+5

OU → y = −5
6

x+2

3 Here we interpret µ(·) in different manners: membership function and appropriateness de-
grees, though they are mathematically the same.
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Fig. 2. The relations between fuzzy labels.

As we can see from Fig. 2: µF5(x) = 0.75 and µF6(x) = 0.25 given x = 1.7. According
to definition 4 we can obtain:

µsmall(F5) = 0.8, µlarge(F5) = 1

µsmall(F6) = 0.5, µlarge(F6) = 1

So that the corresponding consonant mass assignments (see definition 3) are:

mF5 = {small, large} : 0.8,{large} : 0.2

mF6 = {small, large} : 0.5,{large} : 0.5

High level labels small and large can be used to describe x = 1.7 by the following
steps.

mx = {F5,F6} : 0.25,{F5} : 0.5, /0 : 0.25

F5 and F6 can be represented by the mass assignments of high level fuzzy labels:
small and large. Considering the term {F5,F6}, it means that both two labels F5 and
F6 are appropriate for labeling x with a certain degree. It defines a area covered both
by F5 and F6 (see Fig. 2) which is an interval between R and T . Therefore, according
to def. 4 we can obtain the mass assignment for {F5,F6}:

m{F5,F6} = {small, large} : 0.5,{large} : 0.5
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Finally, we obtain:

mx = ({small, large} : 0.5,{large} : 0.5) : 0.25,

({small, large} : 0.8,{large} : 0.2) : 0.5, /0 : 0.25

= {small, large} : 0.525,{large} : 0.225, /0 : 0.25

From the above example, if we use small and large to describe x directly. By the
function of small we can obtain u = 7

12 so that the mass assignments are:

mx = {small, large} :
7

12
,{large} :

5
12

which is different from the result presented in example 1. It is because precision is
lost by using two level of fuzzy labels. In our example, x is firstly repressed by F5
and F6 which is precise. However, the description of x by small and large through
F5 and F6 is not precise any more, because F5 and F6 are not exact representation
of x by involving uncertainties decided by δ . As we can see from the Fig. 3: the
appropriateness degrees of using high level labels to describe low level concepts are
depending on the uncertainty parameter δ . For example, given a data element m:

|µsmall(F(δ1))−µsmall(m)| < |µsmall(F(δ2))−µsmall(m)| < |µsmall(F(δ3))−µsmall(m)|

So that:
µsmall(m) = lim

δ→0
µsamll(F(δ ))

where F is the function of the fuzzy label (a function of δ -either an interval, triangu-
lar fuzzy set or other type of fuzzy set) centered on m.

m

u

small

delta 1

delta 2

delta 3

m

u

small

delta 1
delta 2

delta 3

Fig. 3. The appropriateness degree of using small depends on the width of the vague concept
of about_m.

4 Conclusions

In this paper, a methodology of using high level fuzzy labels to describe vague con-
cepts or low level fuzzy labels is proposed based on label semantics framework. An
example is given to show how to calcuate the mass assigments of high level fuzzy
labels on a vague concept.
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