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Abstract. Generally, there are two main streams of theories for study-
ing uncertainties. One is probability theory and the other is fuzzy set the-
ory. One of the basic ideas of fuzzy set theory is how to define and inter-
pret membership functions. In this paper, we will study tree-structured
data mining model based on a new interpretation of fuzzy theory. In
this new theory, fuzzy labels will be used for modelling. The member-
ship function is interpreted as appropriateness degrees for using labels
to describe a fuzzy concept. Each fuzzy concept is modelled by a dis-
tribution on the appropriate fuzzy label sets. Previous work has shown
that the new model outperforms some well-known data mining models
such as Naive Bayes and Decision trees. However, the fuzzy labels used
in previous works were predefined. We are interested in study the influ-
ences on the performance by using fuzzy labels with different degrees of
overlapping. We test a series of UCI datasets and the results show that
the performance of the model increased almost monotonically with the
increase of the overlapping between fuzzy labels. For this empirical study
with the LDT model, we can conclude that more fuzziness implies better
performance.

1 Introduction

Uncertainty is a nature of our world. Generally, there are two main streams
for modelling uncertainties. One is probability theory and the other is fuzzy
set theory. Since the first paper published by Zadeh in 1965 [9], fuzzy logic has
become an important branch in artificial intelligence as well as some engineering
areas such as intelligent control. One of the basic ideas of fuzzy set theory is
how to define and interpret membership functions. There are a few different
interpretation of fuzziness [8]. In this paper, we will study tree-structured data
mining model based on a new interpretation of fuzzy theory. In this new theory,
which is referred to as Label Semantics [2], fuzzy labels will be used for modelling.
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One inherent disadvantage of classical decision trees is that the model is sensi-
tive to noise. As pointed out by Quinlan [6]: “the results of (traditional) decision
trees are categorical and so do not convey potential uncertainties in classifica-
tion. Small changes in the attribute values of a case being classified may result
in sudden and inappropriate changes to the assigned class. Missing or imprecise
information may apparently prevent a case being classified at all”. This noise
is not only due to the lack of precision or errors in measured features but is
often present in the model itself since the available features may not be suf-
ficient to provide a complete model of the system. To overcome this problem,
some probabilistic or soft decision trees were proposed. The first fuzzy decision
tree reference can be back to in 1977. Since then, There are more than forty
references on either on fuzzy tree learning or fuzzy rule learning. All these al-
gorithms highlight advantage of using fuzzy rules for classification applications
is to maintain transparency as well as a high accuracy rate. According to Olaru
and Wehenkel [3]: these fuzzy decision tree algorithms can be roughly divided
into two categories:

1. Enable the use of decision trees to manage fuzzy information in the forms of
fuzzy inputs, fuzzy classes or fuzzy rules.

2. Using fuzzy logic to improve their predictive accuracy.

Previous work by Lawry and Qin [4] has shown that the LDT model outper-
forms some well-known data mining models such as Naive Bayes and classical
decision trees such as C4.5 [7]. It also can handle fuzzy information and has
better transparency comparing to other models. However, the fuzzy labels used
in previous works were predefined under some assumptions. We are interested
in study the influences of different degrees of overlapping between neighboring
fuzzy labels.

2 Linguistic Decision Trees

Linguistic decision tree (LDT) [4] is a tree-structured classification model based
on label semantics. The information heuristics used for building the tree are
modified from Quinlan’s ID3 [5] in accordance with label semantics. The nodes
of a LDT are linguistic descriptions of variables and leaves are sets of appropriate
labels. In such decision trees, the probability estimates for branches across the
whole tree is used for classification, instead of the majority class of the single
branch into which the examples fall. Linguistic expressions such as small, medium
and large are used to learn from data and build a linguistic decision tree guided
by information based heuristics. For each branch, instead of labeling it with a
certain class (such as positive or negative in binary classification) the probability
of members of this branch belonging to a particular class is evaluated from a
given training dataset. Unlabeled data is then classified by using probability
estimation of classes across the whole decision tree.
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2.1 Introduction to Label Semantics

Label semantics is a methodology of using linguistic expressions or fuzzy labels
to describe numerical values. For a variable x into a domain of discourse Ω we
identify a finite set of fuzzy labels L = {L1, · · · , Ln} with which to label the
values of x. Then for a specific value x ∈ Ω an individual I identifies a subset of
L, denoted DI

x to stand for the description of x given by I, as the set of labels
with which it is appropriate to label x. If we allow I to vary across a population
V with prior distribution PV , then DI

x will also vary and generate a random set
denoted Dx into the power set of L denoted by S. We can view the random set
Dx as a description of the variable x in terms of the labels in L. The frequency of
occurrence of a particular label, say S, for Dx across the population then gives
a distribution on Dx referred to as a mass assignment on labels. More formally,

Definition 1 (Label Description). For x ∈ Ω the label description of x is a
random set from V into the power set of L, denoted Dx, with associated distri-
bution mx, which is referred to as mass assignment:

∀S ⊆ L, mx(S) = PV ({I ∈ V |DI
x = S}) (1)

where mx(S) is called associated mass of S and
∑

S⊆L mx(S) = 1. Intuitively
mass assignment is a distribution on appropriate label sets and mx(S) quantifies
the evidence that S is the set of appropriate labels for x.

In this framework, appropriateness degrees are used to evaluate how appropriate
a label is for describing a particular value of variable x. Simply, given a particular
value α of variable x, the appropriateness degree for labeling this value with the
label L, which is defined by fuzzy set F , is the membership value of α in F .
The reason we use the new term ‘appropriateness degrees’ is partly because it
more accurately reflects the underlying semantics and partly to highlight the

Algorithm 1. Linguistic translation
input : Given a database D = {〈x1(i), · · · , xn(i)〉|i = 1, · · · , |D|} with

associated classes C = {C1, · · · , C|C|}
output: Linguistic dataset LD
for j ← 1 to n do1

foreach xj do : Cover the universe of xj with NF trapezoidal fuzzy sets2

with 50% overlap. ;
for i ← 1 to |D| do3

foreach Data element xj(i) do ;4

Read appropriateness degrees for xj(i) from corresponding fuzzy set. ;5

Calculating corresponding mass assignments:6

LDi,j = 〈mx(i)(F 1
j ),· · · , mx(i)(F

hj

j )〉 on focal elements from
appropriateness degrees. ;

Save dataset LD where LD = {LDi,j |i = 1, · · · , |D|, j = 1, · · · , n}7
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quite distinct calculus based on this framework [2]. This definition provides a
relationship between mass assignments and appropriateness degrees.

Definition 2 (Appropriateness Degrees)

∀x ∈ Ω, ∀L ∈ L μL(x) =
∑

S⊆L:L∈S

mx(S)

Based on the underlying semantics, we can translate a set of numerical data into
a set of mass assignments on appropriate labels based on the reverse of definition
2 under the following assumptions: consonance mapping, full fuzzy covering and
50% overlapping. These assumptions are fully described in [4] and justified in
[2]. These assumptions guarantee that there is unique mapping from appropriate
degrees to mass assignments on labels. For example, given μmiddleAged(30) = 0.3
and μyoung(30) = 1 which are the memberships of being middleAged and young
given a value of 30 (a person’s age). The corresponding mass assignment is:
m30 = {young, middleAged} : 0.3, {young} : 0.7 (More details of mass assign-
ment calculations are available in [2] and [4]). Given a database, we can translate
each data element into its mass assignment representation. This process is called
linguistic translation. The pseudo-code is given in algorithm 1.

2.2 Degrees of Overlapping

Through linguistic translation, all numerical data can be represented as mass
assignments based on a predefined fuzzy discretization method. In this paper,
unless otherwise stated, we will use a percentile-based (or equal points) dis-
cretization. The idea is to cover approximately the same number of data points
for each fuzzy label. The justification for using this discretization method is
given in [4].

Basically, fuzzy discretization provides an interpretation between numerical
data and their corresponding linguistic data based on label semantics. We may
notice that different fuzzy discretization (fuzzification of a continuous universe)
may result in different linguistic data. We introduce a new parameter PT by
which to measure the degrees of overlapping between fuzzy labels. As we can
see from figure 1, given two fuzzy labels F and G, m is the distance between
the weighting centers of a fuzzy labels to the meeting point of their membership
functions. a is actually the length of the overlapping area. PT is calculated as
follows:

PT = a/2m (2)

PT = 0.5 represents 50% of overlapping between each two neighboring fuzzy
labels (e.g., figure 1-A). PT = 0 represents no overlapping at all (figure 1-C),
i.e., the labels are discrete but not fuzzy. Figure 1-B shows a situation that the
degree of overlapping is between 0 and 0.5. Figure 1-D also shows the linear
relation of parameter a and PT .
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Fig. 1. A schematic illustration of calculating the overlap parameter PT given different
degrees of overlaps

2.3 Classification

Given a database of which each instance is labeled by one of the classes: C =
{C1, · · · , C|C|}. A linguistic decision tree with S branches built from this data-
base can be defined as follows:

T = {〈B1, P (C1|B1), · · · , P (C|C||B1)〉, · · · 〈BS , P (C1|BS), · · · , P (C|C||BS)〉}

where P (Ck|B) is the probability of class Ck given a branch B. A branch B
with d nodes (i.e., the length of B is d) is defined as: B = 〈F1, · · · , Fd〉, where
d ≤ n and Fj are focal elements of attribute j. Focal elements are the appropriate
label sets with non-zero masses [2]. For example, consider the branch: 〈〈{small1},
{medium2, large2}〉, 0.3, 0.7〉. This means the probability of class C1 is 0.3 and
C2 is 0.7 given attribute 1 can only be described as small and attribute 2 can
be described as both medium and large.

Given a training set D = {x1, · · · ,xN} where each instance x has n attributes:
〈x1, · · · , xn〉. The class probability of Ck given a particular branch B is calculated
by the proportion of data covered by this branch and belonging to Ck to all the
data covered by this branch:

P (Ck|B) =

∑
i∈Dk

P (B|xi)
∑

i∈D P (B|xi)
(3)

where Dk =
∑

i:xi→Ck
xi is the subset consisting of instances which belong to

class k. The probability of a branch B given x can be regarded as the proportion
of the data x covered by branch B and it is evaluated by:
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P (B|x) =
d∏

j=1

mxj (Fj) (4)

where mxj (Fj) for j = 1, · · · , d are mass assignments of the single data ele-
ment xj . Now consider classifying an unlabelled instance in the form of y =
〈y1, · · · , yn〉 from the test set. First we apply linguistic translation to y based
on the fuzzy covering of the training data D. According to the Jeffrey’s rule the
probabilities of class Ck given a LDT with S branches are evaluated as follows:

P (Ck|y) =
S∑

s=1

P (Ck|Bs)P (Bs|y) (5)

where P (Ck|Bs) and P (Bs|x) are evaluated based on equations 3 and 4.

Algorithm 2. Decision Tree Learning
input : LD: Linguistic dataset obtained from Algorithm 1.
output: LDT : Linguistic Decision Tree

Set a maximum depth Mdep and a threshold probability T .1

for l ← 0 to Mdep do2

B ← ∅ when l = 03

The set of branches of LDT at depth l is Bl = {B1, · · · , B|Bl|}4

for v ← 1 to |B| do5

foreach Bv do :6

for t ← 1 to |C| do7

foreach t do Calculating conditional probabilities:8

P (Ct|Bv) =
∑

i∈Dt
P (Bv|xi)/

∑
i∈D P (Bv|xi)

if P (Ct|Bv) ≥ T then9

break (step out the loop)10

if ∃ xj: xj is free attribute then11

foreach xj do : Calculate: IG(Bv, xj) = E(Bv) − EE(Bv, xj)12

IGmax(Bv) = maxxj [IG(Bv, xj)]13

Expanding Bv with xmax where xmax is the free attribute we can14

obtain the maximum IG value IGmax.
B′

v ←
⋃

Fj∈Fj
{Bv ∪ Fj}.15

else16

exit;17

Bl+1 ←
⋃s

r=1 B′
r.18

LDT = B19

2.4 LID3 Algorithm

Linguistic ID3 (LID3) is the learning algorithm proposed for building the lin-
guistic decision tree. Similar to the ID3 algorithm [5], search is guided by an
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information based heuristic, but the information measurements of a LDT are
modified in accordance with label semantics. The measure of information de-
fined for a branch B and can be viewed as an extension of the entropy measure
used in ID3. The branch entropy of a branch B is given by

E(B) = −
|C|∑

k=1

P (Ck|B) log2(P (Ck|B)) (6)

where |C| is the number of classes. Now, given a particular branch B suppose we
want to expand it with the attribute xj . The evaluation of this attribute will be
given based on the expected entropy defined as follows:

EE(B, xj) = E[E(xj |B)] =
∑

Fj∈Fj

E(B ∪ Fj)P (Fj |B) (7)

where B∪Fj represents the new branch obtained by appending the focal element
Fj to the end of branch B. The probability of Fj given B can be calculated as
follows:

P (Fj |B) =
∑

i∈D(B ∪ Fj |xi)
∑

i∈D(B|xi)
(8)

We can now define the Information Gain (IG) obtained by expanding branch B
with attribute xj as:

IG(B, xj) = E(B) − EE(B, xj) (9)

The pseudo-code of the LID3 algorithm are shown in Algorithm 2.

Table 1. Descriptions of the datasets for experiments selected from the UCI machine
learning repository [1]

Dataset Classes Size Attributes Dataset Classes Size Attributes
Balance 3 625 4 Breast-cancer 2 286 9
Ecoli 8 336 8 Glass 6 214 9
Heart-C 2 303 13 Heart-S 2 270 13
Heptitis 2 155 19 Iris 3 150 4
Liver 2 345 6 Pima 2 768 8
Wcancer 2 699 9 Wine 3 178 14

3 Experiments

In this section, we investigate the influences of overlapping degrees on the ac-
curacy by some empirical studies. First of all, we need to specify the parameter
settings for the LDT model. In the following experiments, we use 3 trapezoidal
fuzzy sets for discretization (i.e., Alg. 1 line 2: NF = 3). Probability threshold
T = 1 (Alg. 2 line 1) and we set Mdep = n in order to develop a complete LDT
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Fig. 2. Monotonically increased performance
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Fig. 3. More overlapping does not guarantee the better performance for these datasets

(the growth of LDT will be stopped if all attributes have been used, see Alg 2
line 11). These settings are justified in [4]. We tested 12 datasets taken from UCI
[1] machine learning repository. For each experiment, the dataset is partitioned
into two parts that the data belonging to the same class are evenly split. One
part of the data is for training and the other for test. We will randomly do the
split for 10 times and the average results with standard deviation will be calcu-
lated. This is referred to as 50-50 split experiments [4]. The experimental results
on the given data sets are shown in figures 2 and 3, respectively.

As we can see from these figures, the performance of 8 of the 12 datesets
are roughly monotonic increased with the increase of PT . It implies that more
fuzziness tends to increase the robustness of the LDT model and get better
performance. However, from the results in figure 3, we can tell that more over-
lapping does not guarantee the better performance. For some datasets, 30% of
overlapping maybe is enough. More overlapping would not be necessary and it
may give worse results sometime. From all the results, we can see that LDTs with
fuzzy labels generally outperform the ones with discrete labels (where PT = 0).
Therefore, in summary, for the case of LDT model, we can say that fuzziness
will bring greater performance. The increase is almost monotonically. But the
optimal overlapping degrees are depends on the dataset you tested.
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4 Conclusions

In this paper, we extended the previous work on linguistic decision trees to study
the influences on performance by using fuzzy labels with different degrees of
overlapping. We tested the LDT model on a series of UCI datasets and the results
show that the performance increased almost monotonically with the increase of
the overlapping between fuzzy labels. For this empirical study with the LDT
model, we can conclude that more fuzziness does imply better performance.
However, the optimal overlapping degrees are depends on datasets.
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