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Abstract: The learning of transparent models is an important and neglected
area of data mining. The data mining community has tended to focus on algo-
rithm accuracy with little emphasis on the knowledge representation frame-
work. However, the transparency of a model will help practitioners greatly in
understanding the trends and idea hidden behind the system. In this chapter,
a random set based knowledge representation framework for learning linguis-
tic models is introduced. This framework is referred to as label semantics
and a number of data mining algorithms are proposed. In this framework,
a vague concept is modelled by a probability distribution over a set of ap-
propriate fuzzy labels which is called as mass assignment. The idea of mass
assignment provides a probabilistic approach for modelling uncertainty based
on pre-defined fuzzy labels.

1 Introduction

Fuzzy Logic was first proposed by Zadeh [30] as an extension of traditional
binary logic. In contrast to a classical set, which has a crisp boundary, the
boundary of a fuzzy set is blurred and the transition is characterized by mem-
bership functions. In early research fuzzy logic was successfully applied in con-
trol systems and expert systems where the linguistic interpretation fuzzy sets
allowed for an interface between the human user and a computer system. Be-
cause our language is fuzzy, the concepts represented by language is full of
uncertainty and impreciseness. Therefore, fuzzy sets can be used to model lan-
guage. This idea also motivates related research into Computing with Words
[31] and Perception-based Reasoning [32].

Almost all the labels we give to characterize a group of objects are fuzzy.
Given a fuzzy set, an object may belong to this set with a certain membership
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value. In traditional set theory, this membership value only has two possible
values, 1 and 0, representing the case where the object belongs to or does
not belong to the set, respectively. In a fuzzy set, the membership values are
continuous real values from 0 to 1. We use a fuzzy term such as ‘big’ to label
a particular group, because they share the property of objects within this
group (i.e., they are big). The objects within this group will have different
membership values varying from 0 to 1 qualifying the degree to which they
satisfy the concept ‘big’. An object with membership of 0.8 is more likely to
be described as ‘big’ than an object with membership of 0.4. If we consider
this problem in another way. Given an object, label ‘big’ can be used to
describe this object with some appropriateness degrees. Follow this idea, we
discuss a new approach based on random set theory to interpret imprecise
concepts. This framework, first proposed by Lawry [10] and is referred to as
Label Semantics, can be regarded as an approach to Modelling with Words
[11].

Modeling with Words is a new research area which emphasis “modelling”
rather than “computing”. For example, Zadeh’s theories on Perception-based
Computing [32] and Precisiated Natural Language [34] are the approaches of
“computing”. However, the relation between it and Computing with Words
[31] is close is likely to become even closer [33]. Both of the research areas
are aimed at enlarging the role of natural languages in scientific theories,
especially, in knowledge management, decision and control. In this chapter,
the framework is mainly used for modelling and building intelligent machine
learning and data mining systems. In such systems, we use words or fuzzy
labels for modelling uncertainty. Therefore, the research presented here is
considered as a framework for modelling with words.

This chapter is organized as follows: A systematic introduction on label
semantics is given in the first section. Based on the framework we introduced,
we will give the details of several data mining models based on label seman-
tics: Linguistic Decision Trees in section 3, Label semantics based Bayesian
estimation in section 4, and Linguistic Rule Induction in section 5. Finally,
we give the summary and discussions in the final section.

2 Label Semantics

Vague or imprecise concepts are fundamental to natural language. Human
beings are constantly using imprecise language to communicate each other.
We usually say ‘Peter is tall and strong’ but not ‘Peter is exactly 1.85 me-
ters in height and he can lift 100kg weights’. We will focus on developing an
understanding of how an intelligent agent can use vague concepts to convey
information and meaning as part of a general strategy for practical reason-
ing and decision making. Such an agent can could be an artificial intelligence
program or a human, but the implicit assumption is that their use of vague
concepts is governed by some underlying internally consistent strategy or al-
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gorithm. We may notice that labels are used in natural language to describe
what we see, hear and feel. Such labels may have different degrees of vagueness
(i.e., when we say Peter is young and he is male, the label young is more vague
than the label male because people may have more widely different opinions
on being young than being male. For a particular concept, there could be
more than one label that is appropriate for describing this concept, and some
labels could be more appropriate than others. Here, we will use a random
set framework to interpret these facts. Label Semantics, proposed by Lawry
[10], is a framework for modelling with linguistic expressions, or labels such
as small, medium and large. Such labels are defined by overlapping fuzzy sets
which are used to cover the universe of continuous variables.

2.1 Mass Assignment on Fuzzy Labels

For a variable x into a domain of discourse Ω we identify a finite set of
linguistic labels L = {L1, · · · , Ln} with which to label the values of x. Then
for a specific value x ∈ Ω an individual I identifies a subset of L, denoted DI

x

to stand for the description of x given by I, as the set of labels with which it
is appropriate to label x. The underlying question posed by label semantics
is how to use linguistic expressions to label numerical values. If we allow I to
vary across a population V with prior distribution PV , then DI

x will also vary
and generate a random set denoted Dx into the power set of L denoted by S.
We can view the random set Dx as a description of the variable x in terms
of the labels in L. The frequency of occurrence of a particular label, say S,
for Dx across the population then gives a distribution on Dx referred to as a
mass assignment on labels. More formally,

Definition 1 (Label Description) For x ∈ Ω the label description of x is
a random set from V into the power set of L, denoted Dx, with associated
distribution mx, which is referred to as mass assignment:

∀S ⊆ L, mx(S) = PV ({I ∈ V |DI
x = S}) (1)

where PV is the prior distribution of population V . mx(S) is called the mass
associated with a set of labels S and

∑

S⊆L
mx(S) = 1 (2)

Intuitively mass assignment is a distribution on appropriate label sets and
mx(S) quantifies the evidence that S is the set of appropriate labels for x.

For example, given a set of labels defined on the temperature outside:
LTemp = {low, medium, high}. Suppose 3 of 10 people agree that ‘medium
is the only appropriate label for the temperature of 15◦ and 7 agree ‘both low
and medium are appropriate labels’. According to def. 1,
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m15(medium) = 0.3 and m15(low, medium) = 0.7

so that the mass assignment for 15◦ is m15 = {medium} : 0.3, {low, medium}:
0.7. More details about the theory of mass assignment can be found in [1].

2.2 Appropriateness Degrees

Consider the previous example, can we know how appropriate for a single la-
bel, say low, to describe 15◦? In this framework, appropriateness degrees are
used to evaluate how appropriate a label is for describing a particular value
of variable x. Simply, given a particular value α of variable x, the appropri-
ateness degree for labeling this value with the label L, which is defined by
fuzzy set F , is the membership value of α in F . The reason we use the new
term ‘appropriateness degrees’ is partly because it more accurately reflects
the underlying semantics and partly to highlight the quite distinct calculus
based on this framework [10]. This definition provides a relationship between
mass assignments and appropriateness degrees.

Definition 2 (Appropriateness Degrees)

∀x ∈ Ω, ∀L ∈ L µL(x) =
∑

S⊆L:L∈S

mx(S)

Consider the previous example, we then can obtain µmedium(15)= 0.7+0.3 =
1, µlow(15) = 0.7. It is also important to note that, given definitions for the
appropriateness degrees on labels, we can isolate a set of subsets of L with
non-zero masses. These are referred to as focal sets and the appropriate labels
with non-zero masses as focal elements, more formally,

Definition 3 (Focal Set) The focal set of L is a set of focal elements defined
as:

F = {S ⊆ L|∃x ∈ Ω, mx(S) > 0}
Given a particular universe, we can then always find the unique and con-

sistent translation from a given data element to a mass assignment on focal
elements, specified by the function µL : L ∈ L.

2.3 Linguistic Translation

Based on the underlying semantics, we can translate a set of numerical data
into a set of mass assignments on appropriate labels based on the reverse of
definition 2 under the following assumptions: consonance mapping, full fuzzy
covering and 50% overlapping [20]. Consonance assumption implies that voters
are agreed with the natural order of fuzzy labels. A voter won’t set ‘small’ and
‘large’ as appropriate labels without ‘medium’. These assumptions are fully
described in [20] and justified in [12]. These assumptions guarantee that there
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is unique mapping from appropriate degrees to mass assignments on labels.
For example, Figure 1 shows the universes of two variables x1 and x2 which
are fully covered by 3 fuzzy sets with 50% overlap, respectively. For x1, the
following focal elements occur:

F1 = {{small1}, {small1,medium1}, {medium1}, {medium1, large1}, {large1}}
Since small1 and large1 do not overlap, the set {small1, large1} cannot occur
as a focal element according to def. 3. We can always find a unique translation
from a given data point to a mass assignment on focal elements, as specified
by the function µL. Given a particular data element, the sum of associated
mass is 1. This is referred to as linguistic translation. Suppose we are given
a numerical data set D = {〈x1(i), . . . , xn(i)〉|i = 1, . . . , N} and focal set on
attribute j: Fj = {F 1

j , . . . , F
hj

j |j = 1, . . . , n}, we can obtain the following new
data base by applying linguistic translation described in Algorithm 1.

Algorithm 1: Linguistic translation
input : Given a database D = {〈x1(i), · · · , xn(i)〉|i = 1, · · · , |D|} with

associated classes C = {C1, · · · , C|C|}
output: Linguistic dataset LD
for j ← 1 to n do1

foreach xj do : Cover the universe of xj with NF trapezoidal fuzzy2

sets with 50% overlap.
for i ← 1 to |D| do3

foreach Data element xj(i) do4

Read appropriateness degrees for xj(i) from corresponding fuzzy5

set.
Calculating corresponding mass assignments:6

LDi,j = 〈mx(i)(F
1
j ),· · · , mx(i)(F

hj

j )〉 on focal elements from
appropriateness degrees.

Save dataset LD where LD = {LDi,j |i = 1, · · · , |D|, j = 1, · · · , n}7

For a particular attribute with an associated focal set, linguistic translation
is a process of replacing its data elements with the focal element masses of
these data elements. See figure 1. µsmall1(x1(1) = 0.27) = 1, µmedium1(0.27) =
0.6 and µlarge1(0.27) = 0. They are simply the memberships read from the
fuzzy sets. We then can obtain the mass assignment of this data element
according to def. 2 under the consonance assumption [20]: m0.27 (small1)
= 0.4, m0.27(small1, medium1) = 0.6. Similarly, the linguistic translations
for two data:

x1 = 〈x1(1) = 0.27〉, 〈x2(1) = 158〉
x2 = 〈x1(2) = 0.7〉, 〈x2(2) = 80〉

are illustrated on each attribute independently as follows:
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Fig. 1. A full fuzzy covering (discretization) using three fuzzy sets with 50% overlap
on two attributes x1 and x2, respectively.




x1

x1(1) = 0.27
x1(2) = 0.7


 LT→




mx({s1}) mx({s1, m1}) mx({m1}) mx({m1, l1}) mx({l1})
0.4 0.6 0 0 0
0 0 0.2 0.8 0







x2

x2(1) = 158
x2(2) = 80


 LT→




mx({s2}) mx({s2, m2}) mx({m2}) mx({m2, l2}) mx({l2})
0 0 0 0.4 0.6

0.4 0.6 0 0 0




Therefore, we can obtain:

x1 → 〈{s1} : 0.4, {s1,m1} : 0.6〉, 〈{m2, l2} : 0.4, {l2} : 0.6〉
x2 → 〈{m1} : 0.2, {m1, l1} : 0.8〉, 〈{s2} : 0.4, {s2,m2} : 0.6〉

We may notice that the new mass assignment based data generated by
linguistic translation is depending on the way of universe discretization. Dif-
ferent discretizations may result in different data. Since we will use the new
data for training data mining models in the following sections. We hope our
data could be as discriminate as possible. A few empirical experiments have
been done in [20] and the percentile-based (or equal point) discretization is
a fairly good method where each fuzzy label covers approximately the same
number of data points. In this chapter, unless otherwise stated, we will use
this method for discretizing the continuous universe.

2.4 Linguistic Reasoning

As a high-level knowledge representation language for modelling vague con-
cepts, label semantics allows linguistic reasoning. Given a universe of discourse
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Ω containing a set of objects or instances to be described, it is assumed that
all relevant expressions can be generated recursively from a finite set of basic
labels L = {L1,. . ., Ln}. Operators for combining expressions are restricted to
the standard logical connectives of negation “¬”, conjunction “∧”, disjunction
“∨” and implication “→”. Hence, the set of logical expressions of labels can
be formally defined as follows:

Definition 4 (Logical Expressions of Labels) The set of logical expres-
sions, LE, is defined recursively as follows:

(i) Li ∈ LE for i = 1, . . . , n.
(ii) If θ, ϕ ∈ LE then ¬θ, θ ∧ ϕ, θ ∨ ϕ, θ → ϕ ∈ LE

Basically, we interpret the main logical connectives as follows: ¬L means that
L is not an appropriate label, L1 ∧L2 means that both L1 and L2 are appro-
priate labels, L1 ∨ L2 means that either L1 or L2 are appropriate labels, and
L1 → L2 means that L2 is an appropriate label whenever L1 is. As well as la-
bels for a single variable, we may want to evaluate the appropriateness degrees
of a complex logical expression θ ∈ LE. Consider the set of logical expressions
LE obtained by recursive application of the standard logical connectives in L.
In order to evaluate the appropriateness degrees of such expressions we must
identify what information they provide regarding the the appropriateness of
labels. In general, for any label expression θ we should be able to identify a
maximal set of label sets, λ(θ) that are consistent with θ so that the meaning
of θ can be interpreted as the constraint Dx ∈ λ(θ).

Definition 5 (λ-function) Let θ and ϕ be expressions generated by recur-
sive application of the connectives ¬,∨,∧ and → to the elements of L (i.e.
θ, ϕ ∈ LE). Then the set of possible label sets defined by a linguistic expres-
sion can be determined recursively as follows:

(i) λ(Li) = {S ⊆ F|{Li} ⊆ S}
(ii) λ(¬θ) = λ(θ)
(iii) λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)
(iv) λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)
(v) λ(θ → ϕ) = λ(θ) ∪ λ(ϕ)

It should also be noted that the λ-function provides us with notion of logi-
cal equivalence ‘≡L’ for label expressions

θ ≡L ϕ ⇐⇒ λ(θ) = λ(ϕ)

Basically, the λ-function provides a way of transferring logical expressions
of labels (or linguistic rules) to random set descriptions of labels (i.e. focal
elements). λ(θ) corresponds to those subsets of F identified as being possible
values of Dx by expression θ. In this sense the imprecise linguistic restriction
‘x is θ’ on x corresponds to the strict constraint Dx ∈ λ(θ) on Dx. Hence, we
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can view label descriptions as an alternative to linguistic variables as a means
of encoding linguistic constraints.

2.5 High Level Label Description

In this section, we will consider how to use a high level fuzzy label to describe
another fuzzy label. Here the term high level does not mean a hieracrhial
structure. We will actually consider two set of fuzzy labels which are inde-
pendently defined on the same universe. If the cardinality of a set of labels L
is denoted by |L|. We then can say L1 higher level labels of L2 if L1 < L2.
We will acutally consider the methodology of using one set of fuzzy labels to
represent the other set of fuzzy labels.
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Fig. 2. The appropriateness degree of using small to label vague concept about m
is defined by the ratio of the area covered by both labels to the area covered by
about m only.

For example, a fuzzy concept about m is defined by an interval on [a, b]
(see the left-hand side figure of fig. 2), so that the appropriateness degree of
using fuzzy label small to label about m is:

µsmall(about m) =
1

b− a

∫ b

a

µsmall(u)du (3)

If the vagueness of the concept about m depends on the interval denoted by
δ where the length of the interval |δ| = b− a. We then can obtain:

µsmall(about m) =
1
|δ|

∫

u∈δ

µsmall(u)du (4)

If about m is defined by other fuzzy labels rather than an interval, for example,
a triangular fuzzy set (e.g., the right-hand side figure of fig. 2). How can we
define the appropriateness degrees?
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We begin by considering a data element x ∈ [a, b], the function µabout m(x)
represents the degree of x belonging to the fuzzy label F . Function µsmall(x)
defines the appropriateness degrees of using label small to describe x 3. We
essentially hope to obtain the appropriateness degrees of using small to la-
bel about m. We then consider the each elements belonging to about m. If
µabout m(x) = 1, which means x is absolutely belonging to about m, then the
appropriateness degree is just µsmall(x). However, if µabout m < µsmall(x), we
can only say it is belonging to about m in certain degrees. Logically, fuzzy
operation AND is used, and in practical calculation, the min(·) function is
employed. The appropriateness is then defined by:

µsmall(about m) =

∫
u∈δ

min(µsmall(u), µabout m(u))du∫
u′∈δ

µabout m(u′)du′
(5)

where function min(x, y) returns the minimum value between x and y. Equa-
tion 4 is a special case of equation 5 where the following equations always
hold:

µsmall(u) = min(µsmall(u), µabout m(u))

|δ| =
∫

u∈δ

µabout m(u)du

Definition 6 Given a vague concept (or a fuzzy label) F and a set of labels
L = {L1, . . . , Lm} defined on a continuous universe Ω. The appropriateness
degrees of using label L (L ∈ L) to describe F is:

µL(F ) =

∫
u∈δ

min(µL(u), µF (u))du∫
u′∈δ

µF (u′)du′
(6)

where δ is the universe covered by fuzzy label F .

Given appropriateness degrees, the mass assignment can be obtained from
the appropriateness degrees by the consonance assumption. Equation 5 is a
general form for all kinds of fuzzy sets which are not limited to an interval or
a triangular fuzzy sets.

3 Linguistic Decision Tree

Tree induction learning models have received a great deal of attention over
recent years in the fields of machine learning and data mining because of
their simplicity and effectiveness. Among them, the ID3 [24] algorithm for
decision trees induction has proved to be an effective and popular algorithm
for building decision trees from discrete valued data sets. The C4.5 [26] algo-
rithm was proposed as a successor to ID3 in which an entropy based approach
3 Here we interpret µ(·) in different manners: membership function and appropri-

ateness degrees, though they are mathematically the same.



10 Zengchang Qin and and Jonathan Lawry

to crisp partitioning of continuous universes was adopted. One inherent dis-
advantage of crisp partitioning is that it tends to make the induced decision
trees sensitive to noise. This noise is not only due to the lack of precision or
errors in measured features but is often present in the model itself since the
available features may not be sufficient to provide a complete model of the
system. For each attribute, disjoint classes are separated with clearly defined
boundaries. These boundaries are ‘critical’ since a small change close to these
points will probably cause a complete change in classification. Due to the ex-
istence of uncertainty and imprecise information in real-world problems, the
class boundaries may not be defined clearly. In this case, decision trees may
produce high misclassification rates in testing even if they perform well in
training. To overcome this problems, many fuzzy decision tree models have
been proposed [2, 9, 15, 16].

Linguistic decision tree (LDT) [20] is a tree-structured classification model
based on label semantics. The information heuristics used for building the
tree are modified from Quinlan’s ID3 [24] in accordance with label semantics.
Given a database of which each instance is labeled by one of the classes:
{C1, · · · , CM}. A linguistic decision tree with S consisting branches built from
this database can be defined as follows:

T = {〈B1, P (C1|B1), · · · , P (CM |B1)〉, · · · 〈BS , P (C1|BS), · · · , P (CM |BS)〉}
where P (Ck|B) is the probability of class Ck given a branch B. A branch B
with d nodes (i.e., the length of B is d) is defined as: B = 〈F1, · · · , Fd〉, where
d ≤ n and Fj ∈ Fj is one of the focal elements of attribute j. For example,
consider the branch: 〈〈{small1}, {medium2, large2}〉, 0.3, 0.7〉. This means
the probability of class C1 is 0.3 and C2 is 0.7 given attribute 1 can only
be described as small and attribute 2 can be described as both medium and
large.

These class probabilities are estimated from a training setD = {x1, · · · ,xN}
where each instance x has n attributes: 〈x1, · · · , xn〉. We now describe how
the relevant branch probabilities for a LDT can be evaluated from a database.
The probability of class Ck (k = 1, · · · ,M) given B can then be evaluated as
follows. First, we consider the probability of a branch B given x:

P (B|x) =
d∏

j=1

mxj (Fj) (7)

where mxj (Fj) for j = 1, · · · , d are mass assignments of single data element
xj . For example, suppose we are given a branch B = 〈{small1}, {medium2,
large2}〉 and data x = 〈0.27, 158〉 (the linguistic translation of x1 was given
in section 2.3). According to eq. 7:

P (B|x) = mx1({small1})×mx2({medium2, large2}) = 0.4× 0.4 = 0.16

The probability of class Ck given B can then be evaluated by:
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P (Ck|B) =

∑
i∈Dk

P (B|xi)∑
i∈D P (B|xi)

(8)

where Dk is the subset consisting of instances which belong to class k. In the
case where the denominator is equals to 0, which may occur when the training
database for the LDT is small, then there is no non-zero linguistic data covered
by the branch. In this case, we obtain no information from the database so that
equal probabilities are assigned to each class. P (Ck|B) = 1

M for k = 1, · · · ,M .
In the case that a data element appears beyond the range of training data
set, we then assign the appropriateness degrees of the minimum or maximum
values of the universe to the data element depending on which side of the
range it appears.

According to the Jeffrey’s rule [14] the probabilities of class Ck given a
LDT with S branches are evaluated as follows:

P (Ck|x) =
S∑

s=1

P (Ck|Bs)P (Bs|x) (9)

where P (Ck|Bs) and P (Bs|x) are evaluated based on equations 7 and 8.

3.1 Linguistic ID3 Algorithm

Linguistic ID3 (LID3) is the learning algorithm we propose for building the
linguistic decision tree based on a given linguistic database. Similar to the
ID3 algorithm [24], search is guided by an information based heuristic, but
the information measurements of a LDT are modified in accordance with
label semantics. The measure of information defined for a branch B and can
be viewed as an extension of the entropy measure used in ID3.

Definition 7 (Branch Entropy) The entropy of branch B given a set of
classes C = {C1, . . . , C|C|} is

E(B) = −
|C|∑
t=1

P (Ct|B) log2 P (Ct|B) (10)

Now, given a particular branch B suppose we want to expand it with the at-
tribute xj . The evaluation of this attribute will be given based on the Expected
Entropy defined as follows:

EE(B, xj) =
∑

Fj∈Fj

E(B ∪ Fj) · P (Fj |B) (11)

where B ∪ Fj represents the new branch obtained by appending the focal
element Fj to the end of branch B. The probability of Fj given B can be
calculated as follows:



12 Zengchang Qin and and Jonathan Lawry

P (Fj |B) =
∑

i∈D P (B ∪ Fj |xi)∑
i∈D P (B|xi)

(12)

We can now define the Information Gain (IG) obtained by expanding branch
B with attribute xj as:

IG(B, xj) = E(B)− EE(B, xj) (13)

Algorithm 2: Decision Tree Learning
input : LD: Linguistic dataset obtained from Algorithm 1.
output: LDT : Linguistic Decision Tree

Set a maximum depth Mdep and a threshold probability T .1

for l ← 0 to Mdep do2

B ← ∅ when l = 03

The set of branches of LDT at depth l is Bl = {B1, · · · , B|Bl|}4

for v ← 1 to |B| do5

foreach Bv do :6

for t ← 1 to |C| do7

foreach t do Calculating conditional probabilities:8

P (Ct|Bv) =
∑

i∈Dt
P (Bv|xi)/

∑
i∈D P (Bv|xi)

if P (Ct|Bv) ≥ T then9

break (step out the loop)10

if ∃ xj: xj is free attribute then11

foreach xj do : Calculate: IG(Bv, xj) = E(Bv)−EE(Bv, xj)12

IGmax(Bv) = maxxj [IG(Bv, xj)]13

Expanding Bv with xmax where xmax is the free attribute we14

can obtain the maximum IG value IGmax.
B′v ←

⋃
Fj∈Fj

{Bv ∪ Fj}.15

else16

exit;17

Bl+1 ←
⋃s

r=1
B′r.18

LDT = B19

The pseudo-code is listed in Algorithm 2. The goal of tree-structured learn-
ing models is to make subregions partitioned by branches be less “impure”,
in terms of the mixture of class labels, than the unpartitioned dataset. For a
particular branch, the most suitable free attribute for further expanding (or
partitioning), is the one by which the “pureness” is maximally increased with
expanding. That corresponds to selecting the attribute with maximum infor-
mation gain. As with ID3 learning, the most informative attribute will form
the root of a linguistic decision tree, and the tree will expand into branches
associated with all possible focal elements of this attribute. For each branch,
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the free attribute with maximum information gain will be the next node, from
level to level, until the tree reaches the maximum specified depth has been
reached.

3.2 Degrees of Fuzziness

Through linguistic translation, all numerical data can be represented as mass
assignments based on a predefined fuzzy discretization method. In this section,
unless otherwise stated, we will use a percentile-based (or equal points) dis-
cretization. The idea is to cover approximately the same number of data points
for each fuzzy label. The justification for using this discretization method is
given in [20].

F
G

m

a

(A)
 
when a = m, PT =0.5

F' G'

m

a

(B)
 
PT = a/2m

F'' G''

m

a=0

(C)
 
when a = 0, PT = 0

a 

PT

0.5

0 m

(D) Relation between a and PT

Fig. 3. A schematic illustration of calculating the overlap parameter PT given
different degrees of overlaps.

Basically, fuzzy discretization provides an interpretation between numeri-
cal data and their corresponding linguistic data based on label semantics. We
may notice that different fuzzy discretization may result in different linguistic
data. We introduce a new parameter PT by which to measure the degrees of
overlapping between fuzzy labels. As we can see from figure 3, given two fuzzy
labels F and G, m is the distance between the weighting centers of a fuzzy
labels to the meeting point of their membership functions. a is actually the
length of the overlapping area. PT is calculated as follows:

PT = a/2m (14)

PT = 0.5 represents 50% of overlapping between each two neighboring fuzzy
labels (e.g., figure 3-A). PT = 0 represents no overlapping at all (figure 3-C),
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i.e., the labels are discrete but not fuzzy. Figure 3-B shows a situation that
the degree of overlapping is between 0 and 0.5. Figure 3-D also shows the
linear relation of parameter a and PT .
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Fig. 4. Monotonically increased performance for linguistic decision trees with in-
creasing degrees of fuzziness.

As we can see from these two figures, the performance these two datesets
are roughly monotonic increased with the increase of PT . It implies that more
fuzziness tends to increase the robustness of the LDT model and get better
performance. From all the results, we can see that LDTs with fuzzy labels
generally outperform the ones with discrete labels (where PT = 0). Due to
the page limit, we cannot put all the results but they are available in [23].
Therefore, in summary, for the case of LDT model, we can say that fuzziness
will bring greater performance. The increase is almost monotonically. But the
optimal overlapping degrees are depends on the dataset you tested.

3.3 Linguistic Constraints

Here we assume that the linguistic constraints take the form of θ = 〈x1 is
θ1, . . . , xn is θn〉, where θj represents a label expression based on Lj : j =
1, . . . , n. Consider the vector of linguistic constraint θ = 〈θ1, · · · , θn〉, where
θj is the linguistic constraints on attribute j. We can evaluate a probability
value for class Ct conditional on this information using a given linguistic
decision tree as follows. The mass assignment given a linguistic constraint θ
is evaluated by

∀Fj ∈ Fj mθj (Fj) =





pm(Fj)∑
Fj∈λ(θj)

pm(Fj)
if : Fj ∈ λ(θj)

0 otherwise
(15)

where pm(Fj) is the prior mass for focal elements Fj ∈ Fj derived from the
prior distribution p(xj) on Ωj as follows:
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pm(Fj) =
∫

Ωj

mx(Fj)p(xj)dxj (16)

Usually, we assume that p(xj) is the uniform distribution over Ωj so that

pm(Fj) ∝
∫

Ωj

mx(Fj)dxj (17)

For branch B with s nodes, the probability of B given θ is evaluated by

P (B|θ) =
|B|∏
r=1

mθjr
(Fjr

) (18)

and therefore, by Jeffrey’s rule [14]

P (Ct|θ) =
|LDT |∑
v=1

P (Ct|Bv)P (Bv|θ) (19)

The methodology for classification under linguistic constraints allows us
to fuse the background knowledge in linguistic form into classification. This is
one of the advantages of using high-level knowledge representation language
models such as label semantics.

3.4 Classification given fuzzy data

In previous sections LDTs have only been used to classify crisp data where
objects are described in terms of precise attribute values. However, in many
real-world applications limitations of measurement accuracy means that only
imprecise values can be realistically obtained. In this section we introduce
the idea of fuzzy data and show how LDTs can be used for classification in
this context. Formally, a fuzzy database is defined to be a set of elements or
objects each described by linguistic expressions rather than crisp values. In
other words

FD = {〈θ1(i), . . . , θn(i)〉 : i = 1, . . . , N}
Currently there are very few benchmark problems of this kind with fuzzy
attribute values. This is because, traditionally only crisp data values are
recorded even in cases where this is inappropriate. Hence, we have gen-
erated a fuzzy database from a toy problem where the aim is to identify
the interior of a figure of eight shape. Specifically, a figure of eight shape
was generated according to the equation x = 2(−0.5)(sin(2t) − sin(t)) and
y = 2(−0.5)(sin(2t) + sin(t)) where t ∈ [0, 2π]. (See figure 5). Points in
[−1.6, 1.6]2 are classified as legal if they lie within the ‘eight’ shape (marked
with ×) and illegal if they lie outside (marked with points).

To form the fuzzy database we first generated a crisp database by uni-
formly sampling 961 points across [−1.6, 1.6]2. Then each data vector 〈x1, x2〉
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was converted to a vector of linguistic expressions 〈θ1, θ2〉 as follows: θj = θRj

where Rj = {F ∈ Fj : mxj
(F ) > 0} A LDT was then learnt by applying the

LID3 algorithm to the crisp database. This tree was then used to classify both
the crisp and fuzzy data.
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Fig. 5. Testing on the ‘eight’ problem with linguistic constraints θ, where each
attribute is discretized by 5 trapezoidal fuzzy sets: very small, small, medium, large
and very large.

Suppose a LDT is trained on the ‘eight’ database where each attribute is
discretized by five fuzzy sets uniformly: verysmall (vs), small (s),medium
(m), large (l) and verylarge (vl). Further, suppose we are given the following
description of data points:

θ1 = 〈x is vs ∨ s ∧ ¬m, y is vs ∨ s ∧ ¬m〉
θ2 = 〈x is m ∧ l, y is s ∧m〉
θ3 = 〈x is s ∧m, y is l ∨ vl〉

Experimental results obtained based on the approach introduced in 3.3 are as
follows:

Pr(C1|θ1) = 1.000 Pr(C2|θ1) = 0.000
Pr(C1|θ2) = 0.000 Pr(C2|θ2) = 1.000
Pr(C1|θ3) = 0.428 Pr(C2|θ3) = 0.572

As we can see from figure 5, the above 3 linguistic constraints roughly
correspond to the area 1, 2 and 3, respectively. By considering the occurrence
of legal and illegal examples within these areas, we can verify the correctness
of our approach.
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3.5 Linguistic Decision Trees for Predictions

Consider a database for predictionD = {〈x1(i), · · · , xn(i), xt(i)〉 |i = 1, · · · , |D|}
where x1, · · · , xn are potential explanatory attributes and xt is the continuous
target attribute. Unless otherwise stated, we use trapezoidal fuzzy sets with
50% overlap to discretized each continuous attribute individually (xt) universe
and assume the focal sets are F1, · · ·, Fn and Ft. For the target attribute xt:
Ft = {F 1

t , · · · , F |Ft|
t }. For other attributes: xj : Fj = {F 1

j , . . . , F
|Fj |
j }. The

inventive step is, to regard the focal elements for the target attribute as class
labels. Hence, the LDT4 model for prediction has the following form: A linguis-
tic decision tree for prediction is a set of branches with associated probability
distribution on the target focal elements of the following form:

LDT = {〈B1, P (F 1
t |B1), · · · , P (F |Ft|

t |B1)〉, · · · ,
〈B|LDT |, P (F 1

t |B|LDT |), · · · , P (F |Ft|
t )|B|LDT |)〉}

where F 1
t , · · · , F |Ft|

t are the target focal elements (i.e. the focal elements for
the target attribute or the output attribute).

P (F j
t |x) =

|LDT |∑
v=1

P (F j
t |Bv)P (Bv|x) (20)

Given value x = 〈x1, · · · , xn〉 we need to estimate the target value x̂t (i.e.
xi → x̂t). This is achieved by initially evaluating the probabilities on target
focal elements: P (F 1

t |x), · · · , P (F |Ft|
t |x) as described above. We then take the

estimate of xt, denoted x̂t, to be the expected value:

x̂t =
∫

Ωt

xt p(xt|x) dxt (21)

where:

p(xt|x) =
|Ft|∑

j=1

p(xt|F j
t ) P (F j

t |x) (22)

and

p(xt|F j
t ) =

mxt(F
j
t )∫

Ωt
mxt(F

j
t ) dxt

(23)

so that, we can obtain:

x̂t =
∑

j

P (F j
t |x) E(xt|F j

t ) (24)

where:
4 We will use the same name ‘LDT’ for representing both linguistic decision trees

(for classification) and linguistic prediction trees.
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E(xt|F j
t ) =

∫

Ωt

xt p(xt|F j
t ) dxt =

∫
Ωt

xt mxt
(F j

t ) dxt∫
Ωt

mxt
(F j

t ) dxt

(25)

We test our model on a toy problem of surface regression: 529 points were
uniformly generated describing a surface defined by equation z = sin(x ×
y) where x, y ∈ [0, 3]. 2209 points are sampled uniformly as the test set.
The attributes are discretized uniformly by fuzzy labels, the detailed results
with different number of fuzzy labels are available in [21]. We compared the
prediction surface by the LDT model and the original surface in figure in 6.
As we can see from the figures that these results are quite comparable though
LDT didn’t capture the small change at the tail. In this experiment, we use
7 fuzzy labels for discretization. If we use more labels, we can get the results
as good as as we want, but it just needs more computational time.
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Fig. 6. Left-hand: the surface of z = sin(x× y). Right-hand: the prediction surface
by linguistic decision trees.

4 Bayesian Estimation Based on Label Semantics

Bayesian reasoning provides a probabilistic approach to inference based on the
Bayesian theorem. Given a test instance, the learner is asked to predict its class
according to the evidence provided by the training data. The classification of
unknown example x by Bayesian estimation is on the basis of the following
probability,

P (Ck|x) =
P (x|Ck)P (Ck)

P (x)
(26)

Since the denominator in eq. 26 is invariant across classes, we can consider it
as a normalization parameter. So, we obtain:

P (Ck|x) ∝ P (x|Ck)P (Ck) (27)
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Now suppose we assume for each variable xj that its outcome is independent
of the outcome of all other variables given class Ck. In this case we can obtain
the so-called naive Bayes classifier as follows:

P (Ck|x) ∝
n∏

j=1

P (xj |Ck)P (Ck) (28)

where P (xj |Ck) is often called the likelihood of the data xj given Ck. For a
qualitative attribute, it can be estimated from corresponding frequencies. For
a quantitative attribute, either probability density estimation or discretization
can be employed to estimate its probabilities.

4.1 Fuzzy Naive Bayes

In label semantics framework, suppose we are given focal set Fj for each
attribute j. Assuming that attribute xj is numeric with universe Ωj , then the
likelihood of xj given Ck can be represented by a density function p(xj |Ck)
determine from the database Dk and prior density according to Jeffrey’s rule
[14].

p(xj |Ck) =
∑

F∈Fj

p(xj |F )P (F |Ck) (29)

From Bayes theorem, we can obtain:

p(xj |F ) =
P (F |xj)p(xj)

P (F )
=

mxj (F )p(xj)
pm(F )

(30)

where,

pm(F ) =
∫

Ωj

P (F |xj)p(xj)dxj =
∑

x∈D mxj (F )
|D| (31)

Substituting equation 30 in equation 29 and re-arranging gives

p(xj |Ck) = p(xj)
∑

F∈Fj

mxj (F )
P (F |Ck)
pm(F )

(32)

where P (F |Ck) can be derived from Dk according to

P (F |Ck) =

∑
x∈Dk

mxj (F )
|Dk| (33)

This model is called fuzzy Naive Bayes (FNB). If we weaken the independence
assumption, we can obtain a fuzzy semi-Naive Bayes (FSNB). More details of
FNB and FSNB can be found in [27].
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4.2 Fuzzy Semi-Naive Bayes

The main advantage of using Semi-Naive Bayes over Naive Bayes is that it
allows us to solve non-decomposable problems such as XOR by weakening the
independence assumption of Naive Bayes. However, in order to utilize Semi-
Naive Bayes it is necessary to find effective groupings of attributes within
which dependencies must be taken into account. In this chapter, we present
and evaluate a number of heuristic search algorithms for finding such groups
of attributes.

Given a set of attributes: x1, x2, · · · , xn, they are partitioned into subsets
S1, · · · , Sw where w ≥ n and for each Si a joint mass assignment mi,j is
determined as follows: suppose, w.l.o.g Si = {x1, · · · , xv} then the join mass
assignment is

∀T1 × · · · × Tv ∈ 2LA1 × · · · × 2LAv (34)

mi,j(T1, · · · , Tv) =
1

|DBj |
∑

k∈D

w∏
r=1

mr,j(Ti : xi ∈ Sr) (35)

Hence the prototype describing Cj is defined as 〈mi,j , · · · ,mw,j〉. A proto-
type of this form naturally defines a joint mass assignment mj on the whole
cross product space 2LA1 × · · · × 2LAn conditional on Cj as follows:

∀T1×· · ·×Tn ∈ 2LA1×· · ·×2LAnmj(T1, · · · , Tn) =
w∏

r=1

mr,j(Ti : xi ∈ Sr) (36)

In this formulation we are encoding variable dependence within the variable
groupings Si : i = 1, · · ·w and assuming independence between the groups.

In order to estimate classification probabilities given input vectors of rea
attribute values we need a mechanism for mapping from mass assignments on
label space onto density functions on attribute space.

Definition 8 (Conditional Density Given a Mass Assignment) Let x
be a variable into Ω with prior distribution p(x), LA be a set of labels for x and
m be a posterior mass assignment for the set of appropriate labels of x inferred
from some database D. Then the posterior distribution of x conditional on m
is given by

∀x ∈ Ω, p(x|m) = p(x)
∑

S⊆LA

m(S)
pm(S)

mx(S) (37)

where pm(S) is the prior mass assignment generated by the prior distribution
p(x) according to

pm(S) =
∫

Ω

mx(S)p(x)dx (38)
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This definition is motivated by the following argument based on the the-
orem of total probability which for a mass assignment, describing variables x
on Ω.
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Fig. 7. Scatter plot showing original data verses prediction data on sunspot pre-
diction problems. Upper left: Fuzzy Naive Bayes; upper right: Support Vector Re-
gression; lower left: non-merged LDT with 5 fuzzy labels; lower right: Semi-naive
Bayes.

We now consider methods for finding attribute groupings that increase
discrimination in the model. Two measures has been proposed in [27]:

Definition 9 (Importance Measure) Let the joint mass assignment for Si

given Cj be denoted mi,j. For any input vector Si the probability of cloass Cj

can be estimated using Bayes theorem where

P (Cj |Si) =
p(Si|mi,j)|Cj |

p(Si|mi,j)|Cj |+ p(Si|mi,¬j)|C¬j | (39)
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where mi,¬j denotes the mass assignments for Sj given ¬Cj. The impor-
tance measured of group Si for class Cj is then defined by

IMj(Si) =

∑
k∈Dj

P (Cj |Si(k))∑
k∈D P (Cj |Si(k))

(40)

Effectively, IMj(Si) is a measure of the importance of the set of variables Si

as discriminators of Cj from the other classes.

Definition 10 (Correlation Measure) Let F1 be the focal sets for S1 and
F2 the focal sets for S2. Now let m1,2,j be the joint mass of S1 ∪ S2 given Cj

C(S1, S2) =
√

1
|F1||F1|

∑

R⊆F1

∑

T⊆F2

(m1,2,j(R, T )−m1,j(R)m2,j(T ))2 (41)

Here a threshold must be used to determine whether attributes should be
grouped. The nearer the correlation measure gets to 1 the higher the correla-
tion between attribute groups.

We tested our models with a real-world problem taken from the Time
Series Data Library [8] and contains data of sunspot numbers between the
years 1700-1979. The input attributes are xT−12 to xT−1 (the data for previous
12 years) and the output (target) attribute is xT , i.e. one-year-ahead. The
experimental results for LID3, Fuzzy Naive Bayes, Semi-Naive Bayes and ε-
SVR [6] are compared in figure 7. We can see the results are quite comparable.
In these graphs, for an error free prediction all points will fall on the line
defined by y = x. Roughly, from the illustration, we can see that SVR and non-
merged LDT have better performance, because predicted values distributed
closer to y = x than other two models.

4.3 Hybrid Bayesian Estimation Tree

Based on previous two linguistic models, a hybrid model was proposed in [19].
Given a decision tree T is learnt from a training database D. According to
the Bayesian theorem: A data element x = 〈x1, . . . , xn〉 can be classified by:

P (Ck|x, T ) ∝ P (x|Ck, T )P (Ck|T ) (42)

We can then divide the attributes into 2 disjoint groups denoted by xT =
{x1, · · · , xm} and xB = {xm+1, · · · , xn}, respectively. xT is the vector of the
variables that are contained in the given tree T and the remaining variables
are contained in xB . Assuming conditional independence between xT and xB

we obtain:
P (x|Ck, T ) = P (xT |Ck, T )P (xB |Ck, T ) (43)

Because xB is independent of the given decision tree T and if we assume the
variables in xB are independent of each other given a particular class, we can
obtain:



Knowledge Discovery in a Framework for Modelling with Words 23

P (xB |Ck, T ) = P (xB |Ck) =
∏

j∈xB

P (xj |Ck) (44)

Now consider xT . According to Bayes theorem,

P (xT |Ck, T ) =
P (Ck|xT , T )P (xT |T )

P (Ck|T )
(45)

Combining equation 43, 44 and 45:

P (x|Ck, T ) =
P (Ck|xT , T )P (xT |T )

P (Ck|T )

∏

j∈xB

P (xl|Ck) (46)

Combining equation 42 and 46

P (Ck|x, T ) ∝ P (Ck|xT , T )P (xT |T )
∏

j∈xB

P (xj |Ck) (47)

Further, since P (xT |T ) is independent from Ck, we have that:

P (Ck|x, T ) ∝ P (Ck|xT , T )
∏

j∈xB

P (xj |Ck) (48)

where P (xj |Ck) is evaluated according to eq. 32 and P (Ck|xT , T ) is just the
class probabilities evaluated from the decision tree T according to equation 9.
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Fig. 8. Results for single LDT with Bayesian estimation: average accuracy with
standard deviation on each dataset against the depth of the tree.

We tested this new model with a set of UCI [4] data sets. Figure 8 is a
simple result. More results are available in [19]. From figures 8, we can see
that the BLDT model generally performs better at shallow depths than LDT
model. However, with the increasing of the tree depth, the performance of
the BLDT model remains constant or decreases, while the accuracy curves
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for LDT increase. The basic idea of using Bayesian estimation given a LDT
is to use the LDT as one estimator and the rest of the attributes as other
independent estimators. Consider the two extreme cases for eq. 48. If all the
attributes are used in building the tree (i.e. xT = x), the probability estima-
tions are from the tree only, that is:

P (Ck|x, T ) ∝ P (Ck|xT , T )

If none of the attributes are used in developing the tree (i.e. x = xB), the
probability estimation will become:

P (Ck|x, T ) ∝
∏

j∈xB

P (xj |Ck)

which is simply a Naive Bayes classifier.

4.4 Bayesian Estimation From a Set of Trees

Given a training dataset, a small-sized tree (usually the depth is less than 3)
can be learnt based on the method we discussed in section 3. We then learn
another tree with the same size based on the remaining attributes, i.e., the
attributes which have not been used in previous trees. In this manner, a set
of trees can successively be built from training set. We denote this set of trees
by T = 〈T1, . . . , TW 〉 and where the set of attributes xTw for w = 1, . . . ,W for
a partition of {x1, . . . , xn} (see fig. 9 for a schematic illustration). For a given
unclassified data element x, we can partition it into W groups of disjoint set
of attributes 〈xT1 , . . . ,xTW

〉. If we assume:

x4 x2
x1

x3

x1 x2 x3 x4

Fig. 9. An schematic illustration of Bayesian estimation from a set of linguistic
decision trees.

P (Ct|x) = P (Ct|xT1 , . . . ,xTW ) ≈ P (Ct|T1, . . . , TW ) (49)

Then, according to the Bayes theorem:
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P (Ct|T ) = P (Ct|T1, . . . , TW ) =
P (T1, . . . , TW |Ct)P (Ct)

P (T1, . . . , TW )
(50)

Assuming that the trees are generated independently then it is reasonable to
assume that the groups of attributes are conditionally independent of each
other. Hence,

P (T1, . . . , TW |Ct) =
W∏

w=1

P (Tw|Ct) (51)

For a particular tree Tw for w = 1, . . . , W , we have

P (Tw|Ct) =
P (Ct|Tw)P (Tw)

P (Ct)
(52)

So that,
W∏

w=1

P (Tw|Ct) =
∏W

w=1 P (Ct|Tw)
∏W

i=1 P (Tw)
P (Ct)W

(53)

Combining eq. 50, 51 and 53, we obtain

P (Ct|T ) ∝
∏W

w=1 P (Ct|Tw)
∏W

w=1 P (Tw)
P (Ct)W−1

(54)

Since
∏W

w=1 P (Tw) is independent from Ct, we finally obtain:

P (Ct|T ) ∝
∏W

w=1 P (Ct|Tw)
P (Ct)W−1

(55)

where P (Ct|Tw) is evaluated according to eq. 9.

5 Linguistic Rule Induction

The use of high-level knowledge representation in data modelling allows for
enhanced transparency in the sense that the inferred models can be under-
stood by practioners who are not necessarily experts in the formal represen-
tation framework employed. Rule based systems inherently tend to be more
transparent than other models such as neural networks. A set of concise under-
standable rules can provide a better understanding of how the classification
or prediction is made. Generally, there are two general types of algorithms
for rule induction, top down and bottom up algorithms. Top-down approaches
start from the most general rule and specialize it gradually. Bottom-up meth-
ods star from a basic fact given in training database and generalize it. In this
paper we will focus on a top-down model for generating linguistic rules based
on Quinlan’s First-Order Inductive Learning (FOIL) Algorithm [25].

The FOIL algorithm is based on classical binary logic where typically at-
tributes are assumed to be discrete. Numerical variables are usually discretized
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by partitioning the numerical domain into a finite number of intervals. How-
ever, because of the uncertainty involved in most real-world problems, sharp
boundaries between intervals often lead to a loss of robustness and generality.
Fuzzy logic has been used to solve the problem of sharp transitions between
two intervals. Fuzzy rule induction research has been popular in both fuzzy
and machine learning communities as a means to learning robust transpar-
ent models. Many algorithms have been proposed including simple fuzzy logic
rule induction [3], fuzzy association rule mining [29] and first-order fuzzy rule
induction based on FOIL [5, 17]. In this paper, we will focus on an extension
to the FOIL algorithm based on label semantics.

5.1 Generalized Appropriateness Measures

Based on definition 5, we can evaluate the appropriateness degree of θ ∈ LE
is to aggregate the values of mx across λ(θ). This motivates the following
general definition of appropriateness measures.

Definition 11 (Appropriateness Measures) ∀θ ∈ LE, ∀x ∈ Ω the mea-
sure of appropriateness degrees of θ as a description of x is given by:

µθ(x) =
∑

S∈λ(θ)

mx(S)

Appropriateness degrees (def. 2) introduced at the beginning of this chapter
are only a special case of the appropriateness measures where θ = L for L ∈ L.

Given a continuous variable x: L = {small, medium, large}, F =
{{small}, {small, medium}, {medium}, {medium, large}, {large}}. Sup-
pose we are told that “x is not large but it is small or medium”. This
constraint can be interpreted as the logical expression

θ = ¬large ∧ (small ∨medium)

According to definition 5, the possible label sets of the given logical expression
θ are calculated as follows:

λ(¬large) = {{small}, {small,medium}, {medium}}

λ(small) = {{small}, {small, medium}}
λ(medium) = {{small, medium}, {medium}, {medium, large}}

So that we can obtain:

λ(θ) = λ(¬large ∧ (small ∨ medium)) = {{small}, {small, medium},
{medium}} ∧ ({{small}, {small, medium}} ∨ {{small, medium}, {medium},
{medium, large}}) = {{small}, {small, medium}, {medium}}

If a prior distribution on focal elements of variable x are given as follows:



Knowledge Discovery in a Framework for Modelling with Words 27

{small} : 0.1, {small, med.} : 0.3, {med.} : 0.1, {med., large} : 0.5, {large} : 0.0

The appropriateness measure for θ = ¬large ∧ (small ∨medium) is:

µθ(x) =
∑

S∈λ(θ)

mx(S)

= mx({small}) + mx({small,medium}) + mx({medium})
= 0.1 + 0.3 + 0.1 = 0.5

5.2 Linguistic Rules in Label Semantics

In sections 2 and 3, a basic introduction of label semantics is given and how
it can be used for data modelling is discussed. In this section, we will describe
a linguistic rule induction model based on label semantics. Now, we begin by
clarifying the definition of a linguistic rule. Based on def. 4, a linguistic rule
is a rule can be represented as a multi-dimensional logical expressions of fuzzy
labels.

Definition 12 (Multi-dimensional Logical Expressions of Labels) MLE(n)

is the set of all multi-dimensional label expressions that can be generated from
the logical label expression LEj : j = 1, . . . , n and is defined recursively by:

(i) If θ ∈ LEj for j = 1, . . . , n then θ ∈ MLE(n)

(ii) If θ, ϕ ∈ MLE(n) then ¬θ, θ ∧ ϕ, θ ∨ ϕ, θ → ϕ ∈ MLE(n)

Any n-dimensional logical expression θ identifies a subset of 2L1 ×. . . × 2Ln ,
denoted λ(n)(θ), constraining the cross product of logical descriptions on each
variable: Dx1 × . . . × Dx1 . In such a way the imprecise constraint θ on n
variables can be interpret as the precise constraint Dx1 × . . . × Dx1 ∈ λ(n)(θ)

Given a particular data, how can we evaluated if a linguistic rule is appro-
priate for describing it? Based on the one-dimensional case, we now extend the
concepts of appropriateness degrees to the multi-dimensional case as follows:

Definition 13 (Multi-dimensional Appropriateness Degrees) Given a
set of n-dimensional label expressions MLE(n):

∀ θ ∈ MLE(n),∀xj ∈ Ωj : j = 1, · · · , n

µn
θ (x) = µn

θ (x1, · · · , xn) =
∑

〈F1,···,Fn〉∈λ(n)(θ)

(F1, · · · , Fn)

=
∑

〈F1,···,Fn〉∈λ(n)(θ)

n∏

j=1

mxj (Fj)

The appropriateness degrees in one-dimension are for evaluating a single label
for describing a single data element, while in multi-dimensional cases they are
for evaluating a linguistic rule for describing a data vector.
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Consider a modelling problem with two variables x1 and x2 for which L1 =
{small (s), medium (med), large(lg)} and L2 = {low(lo), moderate (mod),
high(h)}. Also suppose the focal elements for L1 and L2 are:

F1 = {{s}, {s,med}, {med}, {med, lg}, {lg}}

F2 = {{lo}, {lo, mod}, {mod}, {mod, h}, {h}}
According to the multi-dimensional generalization of definition 5 we have that

λ(2)((med ∧ ¬s) ∧ ¬lo) = λ(2)(med ∧ ¬s) ∩ λ(2)(¬lo)

= λ(med ∧ ¬s)× λ(¬lo)

Now, the set of possible label sets is obtained according to the λ-function:

λ(med ∧ ¬s) = {{med}, {med, lg}}

λ(¬lo) = {{mod}, {mod, h}, {h}}
Hence, based on def. 5 we can obtain:

λ(2)((med ∧ ¬s) ∧ ¬lo) = {〈{med}, {mod}〉, 〈{med}, {mod, h}〉,

〈{med}, {h}〉, 〈{med, lg}, {mod}〉, 〈{med, lg}, {mod, h}〉, 〈{med, lg}, {h}〉}
The above calculation on random set interpretation of the given rule based

on λ-function is illustrated in fig. 10: given focal set F1 and F2, we can con-
struct a 2-dimensional space where the focal elements have corresponding
focal cells. Representation of the multi-dimensional λ-function of the logical
expression of the given rule are represented by grey cells.

{s}

{s, med}

{med}

{med,lg}

{lg}

{lo}{lo, mod} { mod}{ mod, h} {h}

Fig. 10. Representation of the multi-dimensional λ-function of the logical expression
θ = (med ∧ ¬ s) ∧ ¬lo showing the focal cells F1×F2.
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Given x = 〈x1, x2〉 = 〈x1 = {med} : 0.6, {med, lg} : 0.4〉, 〈x2 = {lo, mod} :
0.8, {mod} : 0.2〉, we obtain:

µθ(x) = (m({med}) + m({med, lg}))× (m({mod}) + m({mod, h}) + m({h}))

= (0.6 + 0.4)× (0.2 + 0 + 0) = 0.2

And according to def. 5:

µn
¬θ(x) = 1− µθ(x) = 0.8

In another words, we can say that the linguistic expression θ covers the
data x to degree 0.2 and θ can be considered as a linguistic rule. This inter-
pretation of appropriateness is highlighted in next section on rule induction.

5.3 Information Heuristics for LFOIL

In the last section, we have shown how to evaluate the appropriateness of using
a linguistic rule to describe a data vector. In this section, a new algorithm
for learning a set of linguistic rules is proposed based on the FOIL algorithm
[25], it is referred to as Linguistic FOIL (LFOIL). Generally, the heuristics for
a rule learning model are for assessing the usefulness of a literal as the next
component of the rule. The heuristics used for LFOIL are similar but modified
from the FOIL algorithm [25] so as to incorporate linguistic expressions based
on labels semantics. Consider a classification rule of the form:

Ri = θ → Ck where θ ∈ MLE(n)

Given a data set D and a particular class Ck, the data belonging to class Ck

are referred to as positive examples and the rest of them are negative examples.
For the given rule Ri, the coverage of positive data is evaluated by

T+
i =

∑

l∈Dk

µθ(xl) (56)

and the coverage of negative examples is given by

T−i =
∑

l∈(D−Dk)

µθ(xl) (57)

whereDk is the subset of the database which is consisted by the data belonging
to class Ck. The information for the original rule Ri can by evaluated by

I(Ri) = − log2

(
T+

i

T+
i + T−i

)
(58)

Suppose we then propose to another label expression ϕ to the body of Ri

to generate a new rule
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Ri+1 = ϕ ∧ θ → Ck

where ϕ, θ ∈ MLE(n). By adding the new literal ϕ, the positive and negative
coverage becomes:

T+
i+1 =

∑

l∈Dk

µθ∧ϕ(xl) (59)

T−i+1 =
∑

l∈(D−Dk)

µθ∧ϕ(xl) (60)

Therefore, the information becomes,

I(Ri+1) = − log2

(
T+

i+1

T+
i+1 + T−i+1

)
(61)

Then we can evaluate the information gain from adding expression ϕ by:

G(ϕ) = T+
i+1(I(Ri)− I(Ri+1)) (62)

We can see that the measure of information gain consists of two components.
T+

i+1 is the coverage of positive data by the new rule Ri+1 and (I(Ri)−I(Ri+1))
is the increase of information. The probability of Ck given a linguistic rule Ri

is evaluated by:

P (Ck|Ri) =

∑
l∈Dk

µθ(xl)∑
l∈D µθ(xl)

=
T+

i

T+
i + T−i

(63)

when P (Ck|Ri+1) > P (Ck|Ri) (i.e., by appending a new literal, more positive
examples are covered), we can obtain that (I(Ri)−I(Ri+1)) > 0. By choosing
a literal ϕ with maximum G value, we can form the new rule which covers
more positive examples and thus increasing the accuracy of the rule.

5.4 Linguistic FOIL

We define a prior knowledge base KB ⊆ MLE(n) and a probability threshold
PT ∈ [0, 1]. KB consists of fuzzy label expressions based on labels defined on
each attribute. For example, given fuzzy labels {small1 large1} to describe
attribute 1 and {small2 large2} to describe attribute 2. A possible knowledge
base for the given two variables is: KB = {small1, ¬small1, large1, ¬large1,
small2, ¬small2, large2, ¬large2}.

The idea for FOIL is as follows: from a general rule, we specify it by adding
new literals in order to cover more positive and less negative examples accord-
ing to the heuristics introduced in last section. After developing one rule, the
positive examples covered by this rule are deleted from the original database.
We then need to find a new rule based on this reduced database until all posi-
tive examples are covered. In this paper, because of the fuzzy linguistic nature
of the expressions employed, typically data will be only partially covered by



Knowledge Discovery in a Framework for Modelling with Words 31

a given rule. For this reason we need a probability threshold PT as part of
the decision process concerning rule coverage.

A pseudo-code of LFOIL are consists of two parts which are described
follows:

Generating a Rule

• Let rule Ri = θ1 ∧ · · · ∧ θd → Ck be the rule at step i, we then find the
next literal θd+1 ∈ KB − {θ1, · · · , θd} for which G(θd+1) is maximal.

• Replace rule Ri with Ri+1 = θ1 ∧ · · · ∧ θd ∧ θd+1 → Ck

• If P (Ck|θ1 ∧ · · · ∧ θi+1) ≥ PT then terminate else repeat.

Generating a Rule Base

Let ∆i = {ϕ1 → Ck, · · · , ϕt → Ck} be the rule base at step i where ϕ ∈ MLE.
We evaluate the coverage of ∆i as follows:

CV (∆i) =

∑
l∈Dk

µϕ1∨···∨ϕt
(xl)

|Dk| (64)

We define a coverage function δ : Ω1 × · · · ×Ωn → [0, 1] according to:

δ(x|∆i) = µ¬∆i(x) = µ¬(ϕ1∨···∨ϕt)(x) (65)

= 1− µ(ϕ1∨···∨ϕt)(x) = 1−
t∑

w=1

µRw(x)

where δ(x|∆i) represents the degree to which x is not covered by a given rule
base ∆i. If CV is less than a predefined coverage threshold CT ∈ [0, 1]:

CV (∆i) < CT

then we generate a new rule for class Ck according to the above rule generation
algorithm to form a new rule base ∆i+1 but where the entropy calculations
are amended such that for a rule R = θ → Ck,

T+ =
∑

l∈Dk

µθ(xl)× δ(xl|∆i) (66)

T− =
∑

l∈(D−Dk)

µθ(xl) (67)

The algorithm terminates when CV (RBi+1) ≥ CT or CV (RBi+1)−CV (RBi)<
ε where ε ∈ [0, 1] is a very small value, i.e., if there are no improvements in
covering positive examples, we will stop the algorithm to avoid an infinite-loop
calculation.
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Given a rule base ∆i = {ϕ1 → Ck, · · · , ϕt → Ck} and an unclassified
data x, we can estimate the probability of Ck, P (Ck|x), as follows: Firstly,
we determine the rule Rmax = ϕj → Ck for which µϕj (x) is maximal:

ϕj = arg max
k∈∆i

µϕk
(68)

Therefore, given the unclassified data x, rule Rmax is the most appropriate
rule from the rule base we learned. For the rule Rmax → Ck we evaluate two
probabilities pmax and qmax where:

pmax = P (Ck|ϕj) (69)

qmax = P (Ck|¬ϕj) (70)

We then use Jeffrey’s rule [14] to evaluate the class probability by:

P (Ck|x) = pmax × µϕj
(x) + qmax × (1− µϕj

(x)) (71)

We tested this rule learning algorithms with some toy problems and some
real-world problems. Although it does not give us very good accuracy but we
obtained some comparable performance to decision tree but with much better
transparency. More details are available in [22].

6 Conclusions and Discussions

In this chapter, label semantics, a higher level knowledge representation lan-
guage, was used for modeling imprecise concepts and building intelligent data
mining systems. In particular, a number of linguistic data mining models
have been proposed including: Linguistic Decision Trees (LDT) (for both clas-
sification and prediction), Bayesian estimation models (Fuzzy Naive Bayes,
Semi-Naive Bayes, Bayesian Estimation Trees) and Linguistic Rule Induction
(Linguistic FOIL).

Through previous empirical studies, we have shown that in terms of ac-
curacy the linguistic decision tree model tends to perform significantly better
than both C4.5 and Naive Bayes and has equivalent performance to that
of the Back-Propagation neural networks [20]. However, it is also the case
that this model has much better transparency than other algorithms. Lin-
guistic decision trees are suitable for both classification and prediction. Some
benchmark prediction problems have been tested with the LDT model and
we found that it has comparable performance to a number of state-of-art pre-
diction algorithms such as support vector regression systems. Furthermore, a
methodology for classification with linguistic constraints has been proposed
within the label semantics framework.

In order to reduce complexity and enhance transparency, a forward merg-
ing algorithm has been proposed to merge the branches which give sufficiently
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similar probability estimations. With merging, the partitioning of the data
space is re-constructed and more appropriate granules can be obtained. Exper-
imental studies show that merging reduces the tree size significantly without
a significant loss of accuracy. In order to obtain a better estimation, a new
hybrid model combining the LDT model and Fuzzy Naive Bayes has been
investigated. The experimental studies show that this hybrid model has com-
parable performance to LID3 but with much smaller trees. Finally, a FOIL
based rule learning system has been introduced within label semantics frame-
work. In this approach, the appropriateness of using a rule to describe a data
element is represented by multi-dimensional appropriateness measures. Based
on the FOIL algorithm, we proposed a new linguistic rule induction algo-
rithm according to which we can obtain concise linguistic rules reflecting the
underlying nature of the system.

It is widely recognized that most natural concepts have non-sharp bound-
aries. These concepts are vague or fuzzy, and one will usually only be willing
to agree to a certain degree that an object belongs to a concept. Likewise,
in machine learning and data mining, the patterns we are interested in are
often vague and imprecise. To model this, in this chapter, we have discretized
numerical attributes with fuzzy labels by which we can describe real values.
Hence, we can use linguistic models to study the underlying relationships
hidden in the data.

One of the distinctive advantages of linguistic models is that they allow
for information fusion. In this chapter, we discussed methods for classification
with linguistic constraints and classification for fuzzy data. Other information
fusion methods are discussed in [12]. How to efficiently use background knowl-
edge is an important challenge in machine learning. For example, Wang [28]
argues that Bayesian learning has limitations in combining the prior knowl-
edge and new evidence. We also need to consider the inconsistency between
the background knowledge and new evidence. We believe that it will become
a popular research topic in approximate reasoning.

Acknowledgements

The authors thank Prof Lotfi Zadeh for some insightful comments on this
research. The first author also thanks Masoud Nikravesh, Marcus Thint, Ben
Azvine and Trevor Martin for their interests in this research and support. The
writing of this chapter is partly funded BT/BISC fellowship.

References

1. J.F. Baldwin, T.P. Martin and B.W. Pilsworth (1995) Fril-Fuzzy and Evidential
Reasoning in Artificial Intelligence. John Wiley & Sons Inc.



34 Zengchang Qin and and Jonathan Lawry

2. J. F. Baldwin, J. Lawry and T.P. Martin (1997) Mass assignment fuzzy ID3 with
applications. Proceedings of the Unicom Workshop on Fuzzy Logic: Applications
and Future Directions, London pp. 278-294.

3. J. F. Baldwin and D. Xie (2004), Simple fuzzy logic rules based on fuzzy decision
tree for classification and prediction problem, Intelligent Information Processing
II, Z. Shi and Q. He (Ed.), Springer.

4. C. Blake and C.J. Merz. UCI machine learning repository.
http://www.ics.uci.edu/∼mlearn/MLRepository.html

5. M. Drobics, U. Bodenhofer and E. P. Klement (2003), FS-FOIL: an inductive
learning method for extracting interpretable fuzzy descriptions, International
Journal of Approximate Reasoning, 32: pp. 131-152.

6. S. R. Gunn (1998), Support vector machines for classification and regression.
Technical Report of Dept. of Electronics and Computer Science, University of
Southampton. http://www.isis.ecs.soton.ac.uk/resources/svminfo

7. E. Hullermeier (2005), Fuzzy methods in machine learning and data mining:
status and prospects, to appear in Fuzzy Sets and Systems.

8. R. Hyndman and M Akram. Time series Data Library. Monash University.
http://www-personal.buseco.monash.edu.au/h̃yndman/TSDL/index.htm

9. C. Z. Janikow (1998), Fuzzy decision trees: issues and methods. IEEE Trans.
on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 28, No. 1.

10. J. Lawry (2001), Label semantics: A formal framework for modelling with
words. Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
LNAI 2143: pp. 374-384, Springer-Verlag.

11. J. Lawry, J. Shanahan, and A. Ralescu (2003), Modelling with Words: Learn-
ing, fusion, and reasoning within a formal linguistic representation framework.
LNAI 2873, Springer-Verlag.

12. J. Lawry (2004), A framework for linguistic modelling, Artificial Intelligence,
155: pp. 1-39.

13. J Lawry (2006), Modelling and Reasoning with Vague Concepts, Springer.
14. R. C. Jeffrey (1965), The Logic of Decision, Gordon & Breach Inc., New York.
15. C. Olaru and L. Wehenkel (2003), A complete fuzzy decision tree technique.

Fuzzy Sets and Systems. 138: pp.221-254.
16. Y. Peng, P. A. Flach (2001), Soft discretization to enhance the continuous

decision trees. ECML/PKDD Workshop: IDDM.
17. H. Prade, G. Richard, and M. Serrurier (2003), Enriching relational learning

with fuzzy predicates, Proceedings of PKDD, LNAI 2838, pp. 399-410.
18. Z. Qin and J. Lawry (2004), A tree-structured model classification model based

on label semantics, Proceedings of the 10th International Conference on Infor-
mation Processing and Management of Uncertainty in Knowledge-based Sys-
tems (IPMU-04), pp. 261-268, Perugia, Italy.

19. Z. Qin and J. Lawry (2005), Hybrid Bayesian estimation trees based on la-
bel semantics, L. Godo (Ed.), Proceedings of Eighth European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Lecture
Notes in Artificial Intelligence 3571, pp. 896-907, Springer.

20. Z. Qin and J. Lawry (2005), Decision tree learning with fuzzy labels, Informa-
tion Sciences, Vol. 172/1-2: pp. 91-129.

21. Z. Qin and J. Lawry (2005), Prediction trees using linguistic modelling, the
Proceedings of International Fuzzy Association World Congress-05, September
2005, Beijing, China.



Knowledge Discovery in a Framework for Modelling with Words 35

22. Z. Qin and J. Lawry (2005), Linguistic rule induction based on a random set
semantics, the Proceedings of International Fuzzy Association World Congress-
05, September 2005, Beijing, China.

23. Z. Qin and J. Lawry (2007), Fuzziness and performance: an empirical study
with linguistic decision trees. To appear in IFSA-2007, Cuncun, Mexico.

24. J. R. Quinlan (1986), Induction of decision trees, Machine Learning, Vol 1: pp.
81-106.

25. J. R. Quinlan (1990), Learning logical definitions from relations, Machine
Learning, 5: 239-266.

26. J. R. Quinlan (1993), C4.5: Programs for Machine Learning, San Mateo: Mor-
gan Kaufmann.

27. N. J. Randon and J. Lawry (2006), Classification and query evaluation using
modelling with words, Information Sciences, Special Issue - Computing with
Words: Models and Applications, Vol. 176: pp 438-464.

28. Pei Wang (2004), The limitation of Bayesianism, Artificial Intelligence 158(1):
pp. 97-106.

29. D. Xie (2005), Fuzzy associated rules discovered on effective reduced database
algorithm, Proceedings of IEEE-FUZZ, pp. 779-784, Reno, USA.

30. L. A. Zadeh (1965), Fuzzy sets, Information and Control, Vol 8: pp. 338-353.
31. L. A. Zadeh (1996), Fuzzy logic = computing with words, IEEE Transaction

on Fuzzy Systems. Vol. 4, No. 2: pp. 103-111.
32. L. A. Zadeh (2002), Toward a perception-based theory of probabilistic reasoning

with imprecise probabilities, Journal of Statistical Planning and Inference, Vol.
105: pp. 233264.

33. L.A. Zadeh (2003), Foreword for modelling with words, Modelling with Words,
LNAI 2873, Ed., J. Lawry, J. Shanahan, and A.Ralescu, Springer.

34. L.A. Zadeh (2005), Toward a generalized theory of uncertainty (GTU) an out-
line, Information Sciences, Vol. 172/1-2, pp. 1-40.


