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Abstract This chapter gives a tutorial introduction on the label semantics frame-
work for reasoning with uncertainty and several data mining models which are de-
veloped based on this framework. Modelling real world problems typically involves
processing uncertainty of two distinct types. These are uncertainty arising from a
lack of knowledge relating to concepts which, in the sense of classical logic, may
be well defined and uncertainty due to inherent vagueness in concepts themselves.
Traditionally, these two types of uncertainties are modeled in terms of probability
theory and fuzzy set theory, respectively. Zadeh [31] recently argued that all the
approaches for uncertainty modelling can be unified into a general theory of uncer-
tainty (GTU). In this chapter, we will introduce an alternate approach for modelling
uncertainties by using random set and fuzzy logic. This framework is referred to
as label semantics where the labels could be discrete or fuzzy labels. Based on this
framework, we proposed several new data mining models. These models not only
give comparable accuracy to other well-known data mining models, but also high
transparency by which we understand how classifications or predictions have been
made instead of a black box.

1 Introduction

In some sense the world is not fuzzy. We can look out and see precisely a leaf
falling from an old tree whose shadow lies on a green grassland, there are three
people playing and laughing on the grassland, and not far away, there is a car
parked on the side of road. Which of them are fuzzy? But this detail which we
can see with our eyes is often unwanted precision when it comes to categorizing,
classifying and clustering the real world into groups which we can label. We give
labels to such objects as people, cars, grassland, trees and leaves, so that we can
talk about these objects in terms of their common properties within their group.
Fuzzy Logic was first proposed by Zadeh [28] as an extension of traditional binary
logic. In contrast to a classical set, which has a crisp boundary, the boundary of a
fuzzy set is blurred. This smooth transition is characterized by membership func-
tions which give fuzzy sets flexibility in modeling linguistic expressions. In early
research fuzzy logic was successfully applied in expert systems where the linguistic
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interpretation fuzzy sets allowed for an interface between the human user and a
computer system. Because our language is fuzzy, they share the uncertainty and
impreciseness: One word has many different meanings and to describe one meaning,
we could use many different words. Therefore, we may use fuzzy sets to model our
language. This idea provides a good way of bridging the gap between human users
and computing systems, and this motivates related research into Computing with
Words [29].

Almost all the labels we give to groups of objects are fuzzy. For example, friends,
pretty faces, tall trees etc. An object may belong to the set of objects with a certain
label, with a certain membership value. In traditional set theory, this membership
value only has two possible values, 1 and 0, representing the case where the object
belongs to or does not belong to the set, respectively. We use a fuzzy term such as
‘big’ to label a particular group, because they share the property of objects within
this group (i.e., they are big). The objects within this group will have different mem-
bership values varying from 0 to 1 qualifying the degree to which they satisfy the
concept ‘big’. An object with membership of 0.8 is more likely to be described
as ‘big’ than an object with membership of 0.4. If we consider this problem in
another way. Given an object, label ‘big’ can be used to describe this object with
some appropriateness degrees. Follow this idea, we discuss a new approach based
on random set theory to interpret imprecise concepts. This framework, first proposed
by Lawry [10] and is referred to as Label Semantics, can be regarded as an approach
to Modelling with Words1 [11].

2 Label Semantics

Vague or imprecise concepts are fundamental to natural language. Human beings
are constantly using imprecise language to communicate each other. We usually say
‘John is tall and strong’ but not ‘John is exactly 1.85 meters in height and he can lift
100kg weights’. We will focus on developing an understanding of how an intelligent
agent can use vague concepts to convey information and meaning as part of a general
strategy for practical reasoning and decision making. Such an agent can could be an
artificial intelligence program or a human, but the implicit assumption is that their
use of vague concepts is governed by some underlying internally consistent strategy
or algorithm. We may notice that labels are used in natural language to describe what
we see, hear and feel. Such labels may have different degrees of vagueness (i.e.,
when we say Mary is young and she is female, the label young is more vague than

1 According to Zadeh [30], Modeling with Words is a new research area which emphasis “mod-
elling” rather than “computing”, however, the relation between it and Computing with Words is
close is likely to become even closer. Both of the research areas are aimed at enlarging the role of
natural languages in scientific theories, especially, in knowledge management, decision and con-
trol. In this chapter, the framework is mainly used for modelling and building intelligent machine
learning and data mining systems. In such systems, we use words or fuzzy labels for modelling
uncertainty.
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the label female because people may have more widely different opinions on being
young than being female. For a particular concept, there could be more than one
label that is appropriate for describing this concept, and some labels could be more
appropriate than others. Here, we will use a random set framework to interpret these
facts. Label Semantics, proposed by Lawry [10], is a framework for modelling with
linguistic expressions, or labels such as small, medium and large. Such labels are
defined by overlapping fuzzy sets which are used to cover the universe of continuous
variables. Related to fuzzy sets is the theory of possibility, which can be seen as its
numerical counterpart. It is possible to build bridges between probability and fuzzy
sets where the latter are viewed as possibility distributions. In particular, we shall
interpret possibility measures in the framework of random sets and belief function
theory and we shall consider the problem of transforming a possibility distribution
into a probability distribution and vice versa.

2.1 Mass Assignment on Fuzzy Labels

The underlying question posed by label semantics is how to use linguistic expres-
sions to label numerical values. For a variable x into a domain of discourse � we
identify a finite set of linguistic labels L = {L1, · · · , Ln} with which to label the
values of x . Then for a specific value x ∈ � an individual I identifies a subset
of L, denoted DI

x to stand for the description of x given by I , as the set of labels
with which it is appropriate to label x . If we allow I to vary across a population
V with prior distribution PV , then DI

x will also vary and generate a random set
denoted Dx into the power set of L denoted by S. We can view the random set
Dx as a description of the variable x in terms of the labels in L. The frequency of
occurrence of a particular label, say S, for Dx across the population then gives a
distribution on Dx referred to as a mass assignment on labels2.

More formally,

Definition 1 (Label Description) For x ∈ � the label description of x is a random
set from V into the power set of L, denoted Dx , with associated distribution mx ,
which is referred to as mass assignment:

∀S ⊆ L, mx(S) = PV ({I ∈ V |DI
x = S}) (1)

where PV is the prior distribution of population V . mx(S) is called the mass asso-
ciated with a set of labels S and

2 Since S is the power set of L , the logical representation S ∈ S can be written as S ⊆ L. The
latter representation will be used through out this chapter. For example, given L = {L1, L2}, we
can obtain S = {∅, {L1}, {L2}, {L1, L2}}. For every element in S: S ∈ S, the relation S ⊆ L will
hold.
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∑
S⊆L

mx(S) = 1 (2)

Intuitively mass assignment is a distribution on appropriate label sets and mx(S)
quantifies the evidence that S is the set of appropriate labels for x. Based on the
data distribution p(x), we can calculate the prior distribution of labels by summing
up the mass assignment across the database as follows:

pm(S) = p(S) =
∫
�

mx(S)p(x)dx/

⎛
⎝∑

S⊆L

∫
�

mx(S)p(x)

⎞
⎠ (3)

However, the dominator equals to 1 according to the definition of mass assignment
and (2), so that:

pm(S) =
∫
�

mx(S)p(x)dx (4)

And in the discrete case:

pm(S) =
∑
x∈D

mx (S)P(x) (5)

For example, given a set of labels defined on the temperature outside: LT emp =
{low, medium, high}. Suppose 3 of 10 people agree that ‘medium is the only
appropriate label for the temperature of 15◦ and 7 agree ‘both low and medium are
appropriate labels’. According to def. 1,

m15(medium) = 0.3 and m15(low,medium) = 0.7

so that the mass assignment for 15◦ is m15 = {medium} : 0.3, {low,medium}: 0.7.
More details about the theory of mass assignment can be found in [1].

2.2 Appropriateness Degrees

Consider the previous example, can we know how appropriate for a single label,
say low, to describe 15◦? In this framework, appropriateness degrees are used to
evaluate how appropriate a label is for describing a particular value of variable x .
Simply, given a particular value α of variable x , the appropriateness degree for label-
ing this value with the label L, which is defined by fuzzy set F , is the membership
value of α in F . The reason we use the new term ‘appropriateness degrees’ is partly
because it more accurately reflects the underlying semantics and partly to highlight
the quite distinct calculus based on this framework [10]. This definition provides a
relationship between mass assignments and appropriateness degrees.
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Definition 2 (Appropriateness Degrees)

∀x ∈ Ω, ∀L ∈ L μL(x) =
∑

S⊆L:L∈S

mx(S)

Consider the previous example, we then can obtain μmedium(15)= 0.7 + 0.3 =
1, μlow(15) = 0.7. Based on the underlying semantics, we can translate a set of
numerical data into a set of mass assignments on appropriate labels based on the
reverse of definition 2 under the following assumptions: consonance mapping, full
fuzzy covering and 50% overlapping [19]. These assumptions are fully described in
[19] and justified in [12]. These assumptions guarantee that there is unique mapping
from appropriate degrees to mass assignments on labels.

2.3 Linguistic Translation

It is also important to note that, given definitions for the appropriateness degrees on
labels, we can isolate a set of subsets of L with non-zero masses. These are referred
to as focal sets and the appropriate labels with non-zero masses as focal elements,
more formally,

Definition 3 (Focal Set) The focal set of L is a set of focal elements defined as:

F = {S ⊆ L|∃x ∈ �,mx(S) > 0}

Given a particular universe, we can then always find the unique and consistent
translation from a given data element to a mass assignment on focal elements, spec-
ified by the function μL : L ∈ L. For example, Fig. 1 shows the universes of
two variables x1 and x2 which are fully covered by 3 fuzzy sets with 50% overlap,
respectively. For x1, the following focal elements occur:

F1 = {{small1}, {small1,medium1}, {medium1}, {medium1, large1}, {large1}}

Since small1 and large1 do not overlap, the set {small1, large1} cannot occur as
a focal element according to def. 3. We can always find a unique translation from a
given data point to a mass assignment on focal elements, as specified by the function
μL . This is referred to as linguistic translation and is defined as follows:

Definition 4 (Linguistic Translation) Suppose we are given a numerical data set
D = {〈x1(i), . . . , xn(i)〉|i = 1, . . . , N} and focal set on attribute j : F j =
{F1

j , . . . , F
h j
j | j = 1, . . . , n}, we can obtain the following new data base by ap-

plying linguistic translation to D:

D = {A1(i), . . . , An(i)|i = 1, . . . N}
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Fig. 1 A full fuzzy covering (discretization) using three fuzzy sets with 50% overlap on two
attributes x1 and x2, respectively

A j (i) = {〈mx j (i)(F
1
j ), . . . ,mx j (i)(F

h j
j )〉}

where mx j (i)(F
r
j ) is the associated mass of focal element Fr

j as appropriate labels
for data element x j (i) where r = 1, . . . , h j and j = 1, . . . , n.

For a particular attribute with an associated focal set, linguistic translation is a
process of replacing its data elements with the focal element masses of these data
elements. For a variable x , it defines a unique mapping from data element x(i) to a
vector of associated masses 〈mx(i)(F1), . . . ,mx(i)(Fh)〉.

See fig. 1. μsmall1(x1(1) = 0.27)=1, μmedium1 (0.27)=0.6 and μlarge1(0.27)=
0. They are simply the memberships read from the fuzzy sets. We then can obtain
the mass assignment of this data element according to def. 2 under the consonance
assumption [19]: m0.27 (small1) = 0.4, m0.27(small1, medium1) = 0.6. Similarly,
the linguistic translations for two data:

x1 = 〈x1(1) = 0.27〉, 〈x2(1) = 158〉

x2 = 〈x1(2) = 0.7〉, 〈x2(2) = 80〉

are illustrated on each attribute independently as follows:



Fuzzy Label Semantics for Data Mining 243

⎡
⎣ x1

x1(1) = 0.27
x1(2) = 0.7

⎤
⎦ LT→

⎡
⎣mx ({s1}) mx ({s1,m1}) mx ({m1}) mx ({m1, l1}) mx ({l1})

0.4 0.6 0 0 0
0 0 0.2 0.8 0

⎤
⎦

⎡
⎣ x2

x2(1) = 158
x2(2) = 80

⎤
⎦ LT→

⎡
⎣mx ({s2}) mx ({s2,m2}) mx ({m2}) mx ({m2, l2}) mx ({l2})

0 0 0 0.4 0.6
0.4 0.6 0 0 0

⎤
⎦

Therefore, we can obtain:

x1 → 〈{s1} : 0.4, {s1,m1} : 0.6〉, 〈{m2, l2} : 0.4, {l2} : 0.6〉

x2 → 〈{m1} : 0.2, {m1, l1} : 0.8〉, 〈{s2} : 0.4, {s2,m2} : 0.6〉

3 Linguistic Reasoning

As a high-level knowledge representation language for modelling vague concepts,
label semantics allows linguistic reasoning. This section introduces the linguistic
reasoning mechanism for label semantics framework. Given a universe of discourse
� containing a set of objects or instances to be described, it is assumed that all
relevant expressions can be generated recursively from a finite set of basic labels
L = {L1,. . ., Ln}. Operators for combining expressions are restricted to the stan-
dard logical connectives of negation “¬”, conjunction “∧”, disjunction “∨” and
implication “→”. Hence, the set of logical expressions of labels can be formally
defined as follows:

Definition 5 (Logical Expressions of Labels) The set of logical expressions, L E,
is defined recursively as follows:

(i) Li ∈ L E for i = 1, . . . , n.
(ii) If θ, ϕ ∈ L E then ¬θ, θ ∧ ϕ, θ ∨ ϕ, θ → ϕ ∈ L E

Basically, we interpret the main logical connectives as follows: ¬L means that L
is not an appropriate label, L1 ∧ L2 means that both L1 and L2 are appropriate
labels, L1 ∨ L2 means that either L1 or L2 are appropriate labels, and L1 → L2
means that L2 is an appropriate label whenever L1 is. As well as labels for a single
variable, we may want to evaluate the appropriateness degrees of a complex log-
ical expression θ ∈ L E . Consider the set of logical expressions L E obtained by
recursive application of the standard logical connectives in L. In order to evaluate
the appropriateness degrees of such expressions we must identify what information
they provide regarding the the appropriateness of labels. In general, for any label
expression θ we should be able to identify a maximal set of label sets, λ(θ) that
are consistent with θ so that the meaning of θ can be interpreted as the constraint
Dx ∈ λ(θ).
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Definition 6 (λ-function) Let θ and ϕ be expressions generated by recursive appli-
cation of the connectives ¬,∨,∧ and → to the elements of L (i.e. θ, ϕ ∈ L E). Then
the set of possible label sets defined by a linguistic expression can be determined
recursively as follows:

(i) λ(Li ) = {S ⊆ F |{Li } ⊆ S}
(i i) λ(¬θ) = λ(θ)

(i i i) λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)
(iv) λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)
(v) λ(θ → ϕ) = λ(θ) ∪ λ(ϕ)

It should also be noted that the λ-function provides us with notion of logical equiv-
alence ‘≡L’ for label expressions

θ ≡L ϕ ⇐⇒ λ(θ) = λ(ϕ)

Basically, the λ-function provides a way of transferring logical expressions of labels
(or linguistic rules) to random set descriptions of labels (i.e. focal elements). λ(θ)
corresponds to those subsets of F identified as being possible values of Dx by ex-
pression θ . In this sense the imprecise linguistic restriction ‘x is θ ’ on x corresponds
to the strict constraint Dx ∈ λ(θ) on Dx . Hence, we can view label descriptions as
an alternative to linguistic variables as a means of encoding linguistic constraints.

3.1 Appropriateness Measures

Based on definition 6, we can evaluate the appropriateness degree of θ ∈ L E is
to aggregate the values of mx across λ(θ). This motivates the following general
definition of appropriateness measures.

Definition 7 (Appropriateness Measures) ∀θ ∈ L E, ∀x ∈ � the measure of ap-
propriateness degrees of θ as a description of x is given by:

μθ (x) =
∑

S∈λ(θ)
mx(S)

Appropriateness degrees (def. 2) introduced at the beginning of this chapter are only
a special case of the appropriateness measures where θ = L for L ∈ L.

Example 1. Given a continuous variable x : L = {small, medium, large}, F =
{{small}, {small, medium}, {medium}, {medium, large}, {large}}. Suppose we
are told that “x is not large but it is small or medium”. This constraint can be
interpreted as the logical expression

θ = ¬large ∧ (small ∨ medium)
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According to definition 6, the possible label sets of the given logical expression θ
are calculated as follows:

λ(¬large) = {{small}, {small,medium}, {medium}}

λ(small) = {{small}, {small,medium}}

λ(medium) = {{small,medium}, {medium}, {medium, large}}

So that we can obtain:

λ(θ) = λ(¬large∧(small∨medium)) = {{small}, {small, medium}, {medium}}
∧ ({{small}, {small, medium}}∨ {{small, medium}, {medium}, {medium, large}})
= {{small}, {small, medium}, {medium}}

If a prior distribution on focal elements of variable x are given as follows:

{small} : 0.1, {small,med.} : 0.3, {med.} : 0.1, {med., large} : 0.5, {large} : 0.0

The appropriateness measure for θ = ¬large ∧ (small ∨ medium) is:

μθ(x) =
∑

S∈λ(θ)
mx(S)

= mx({small})+ mx({small,medium})+ mx({medium})
= 0.1 + 0.3 + 0.1 = 0.5

3.2 Linguistic Interpretation of the Sets of Appropriate Labels

Based on the inverse of the λ-function (def. 6), a set of linguistic rules (or logical la-
bel expressions) can be obtained from a given set of possible label sets. For example,
suppose we are given the possible label sets {{small},{small, medium},{medium}},
which does not have an immediately obvious interpretation. However by using
the α-function, we can convert this set into a corresponding linguistic expression
(small ∨ medium)∧ ¬large or its logical equivalence.

Definition 8 (α-function)

∀F ∈ F let N (F) =
⎛
⎝ ⋃

F ′∈F :F ′⊇F

F ′
⎞
⎠− F (6)
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then αF =
(∧

L∈F

L

)
∧
⎛
⎝ ∧

L∈N (F)
¬L

⎞
⎠ (7)

We can then map a set of focal elements to label expressions based on the α-function
as follows:

∀R ∈ F θR =
∨
F∈R

αF where λ(θR) = R (8)

The motivation of this mapping is as follows. Given a focal element {s,m} (i.e.
{small,medium}) this states that the labels appropriate to describe the attribute
are exactly small and medium. Hence, they include s and m and exclude all other
labels that occur in focal sets that are supersets of {s,m}. Given a set of focal sets
{{s,m}, {m}} this provides the information that the set of labels is either {s,m}
or {m} and hence the sentence providing the same information should be the dis-
junction of the α sentences for both focal sets. The following example gives the
calculation of the α-function.

Example 2. Let L ={very small (vs), small (s), medium (m), large (l), very
large (vl)} and F ={{vs, s}, {s}, {s,m}, {m}, {m, l}, {l}, {l, vl}}. For calculating
α{l}, we obtain

F ′ ∈ F : F ′ ⊇ {l} = {{m, l}, {l}, {l, vl}} = {m, l, vl}

N ({l}) =
⎛
⎝ ⋃

F ′∈F :F ′⊇{l}
F ′
⎞
⎠− {l} = {l, vl,m} − {l} = {vl,m}

α{l} =
(∧

L∈F

L

)
∧
⎛
⎝ ∧

L∈N (F)
¬L

⎞
⎠ = (l) ∧ (¬m ∧ ¬vl) = ¬m ∧ l ∧ ¬vl

Also we can also obtain

α{m,l} = m ∧ l α{l,vl} = l ∧ vl

Hence, a set of label sets {{m, l}, {l}, {l, vl}} can be represented by a linguistic
expression as follows,

θ{{m,l},{l},{l,vl}} = α{m,l} ∨ α{l} ∨ α{l,vl} =

(m ∧ l) ∨ (¬ m ∧ l ¬ vl) ∨ (l ∧ vl) ≡L large

where ‘≡L’ represents logical equivalence (see def. 6).
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Basically, α-function provides a way of obtaining logical expressions from a random
set description of labels. It is an inverse process of to the λ-function.

As a framework of reasoning with uncertainty, label semantics aims to model
vague or imprecise concepts which can be used as a knowledge representation tool
in high-level modelling tasks. We hope to develop models to be defined interms
of linguistic expressions we can enhance robustness, accuracy and transparency.
Transparent models should allow for a qualitative understanding of the underlying
system in addition to giving quantitative predictions of behaviour. Based on label
semantics, several new transparent data mining algorithms have been proposed. We
found these algorithms have better transparency and comparable accuracy compared
to other algorithms. These algorithms will be introduced in details in the following
sections.

4 Linguistic Decision Tree

Tree induction learning models have received a great deal of attention over recent
years in the fields of machine learning and data mining because of their simplicity
and effectiveness. Among them, the ID3 [22] algorithm for decision trees induction
has proved to be an effective and popular algorithm for building decision trees from
discrete valued data sets. The C4.5 [24] algorithm was proposed as a successor to
ID3 in which an entropy based approach to crisp partitioning of continuous uni-
verses was adopted. One inherent disadvantage of crisp partitioning is that it tends
to make the induced decision trees sensitive to noise. This noise is not only due
to the lack of precision or errors in measured features but is often present in the
model itself since the available features may not be sufficient to provide a com-
plete model of the system. For each attribute, disjoint classes are separated with
clearly defined boundaries. These boundaries are ‘critical’ since a small change
close to these points will probably cause a complete change in classification. Due
to the existence of uncertainty and imprecise information in real-world problems,
the class boundaries may not be defined clearly. In this case, decision trees may
produce high misclassification rates in testing even if they perform well in training.
To overcome this problems, many fuzzy decision tree models have been proposed
[2, 9, 14, 15].

Linguistic decision tree (LDT) [19] is a tree-structured classification model based
on label semantics. The information heuristics used for building the tree are modi-
fied from Quinlan’s ID3 [22] in accordance with label semantics. Given a database
of which each instance is labeled by one of the classes: {C1, · · · ,CM }. A linguistic
decision tree with S consisting branches built from this database can be defined as
follows:

T = {〈B1, P(C1|B1), · · · , P(CM |B1)〉, · · · 〈BS, P(C1|BS), · · · , P(CM |BS)〉}

where P(Ck |B) is the probability of class Ck given a branch B . A branch B with
d nodes (i.e., the length of B is d) is defined as: B = 〈F1, · · · , Fd 〉, where d ≤ n
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and Fj ∈ F j is one of the focal elements of attribute j . For example, consider the
branch: 〈〈{small1}, {medium2, large2}〉, 0.3, 0.7〉. This means the probability of
class C1 is 0.3 and C2 is 0.7 given attribute 1 can only be described as small and
attribute 2 can be described as both medium and large.

These class probabilities are estimated from a training set D = {x1, · · · , xN }
where each instance x has n attributes: 〈x1, · · · , xn〉. We now describe how the
relevant branch probabilities for a LDT can be evaluated from a database. The prob-
ability of class Ck (k = 1, · · · ,M) given B can then be evaluated as follows. First,
we consider the probability of a branch B given x:

P(B|x) =
d∏

j=1

mx j (Fj ) (9)

where mx j (Fj ) for j = 1, · · · , d are mass assignments of single data element x j .
For example, suppose we are given a branch B = 〈{small1}, {medium2, large2}〉
and data x = 〈0.27, 158〉 (the linguistic translation of x1 was given in Sect. 2.3).
According to (9):

P(B|x) = mx1({small1})× mx2({medium2, large2}) = 0.4 × 0.4 = 0.16

The probability of class Ck given B can then be evaluated3 by:

P(Ck |B) =
∑

i∈Dk
P(B|xi )∑

i∈D P(B|xi)
(10)

where Dk is the subset consisting of instances which belong to class k. According
to the Jeffrey’s rule [13] the probabilities of class Ck given a LDT with S branches
are evaluated as follows:

P(Ck |x) =
S∑

s=1

P(Ck |Bs)P(Bs |x) (11)

where P(Ck |Bs) and P(Bs |x) are evaluated based on (9) and (10).

3 In the case where the denominator is equals to 0, which may occur when the training database
for the LDT is small, then there is no non-zero linguistic data covered by the branch. In this
case, we obtain no information from the database so that equal probabilities are assigned to
each class. P(Ck |B) = 1

M f or k = 1, · · · ,M . In the case that a data element appears beyond
the range of training data set, we then assign the appropriateness degrees of the minimum or
maximum values of the universe to the data element depending on which side of the range it
appears.
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4.1 Linguistic ID3 Algorithm

Linguistic ID3 (LID3) is the learning algorithm we propose for building the linguis-
tic decision tree based on a given linguistic database. Similar to the ID3 algorithm
[22], search is guided by an information based heuristic, but the information mea-
surements of a LDT are modified in accordance with label semantics. The measure
of information defined for a branch B and can be viewed as an extension of the
entropy measure used in ID3.

Definition 9 (Branch Entropy) The entropy of branch B given a set of classes C =
{C1, . . . ,C|C|} is

E(B) = −
|C|∑
t=1

P(Ct |B) log2 P(Ct |B) (12)

Now, given a particular branch B suppose we want to expand it with the attribute x j .
The evaluation of this attribute will be given based on the Expected Entropy defined
as follows:

Definition 10 (Expected Entropy)

E E(B, x j ) =
∑

Fj ∈F j

E(B ∪ Fj ) · P(Fj |B) (13)

where B∪Fj represents the new branch obtained by appending the focal element Fj

to the end of branch B. The probability of Fj given B can be calculated as follows:

P(Fj |B) =
∑

i∈D P(B ∪ Fj |xi )∑
i∈D P(B|xi )

(14)

We can now define the Information Gain (IG) obtained by expanding branch B with
attribute x j as:

I G(B, x j ) = E(B)− E E(B, x j ) (15)

The goal of tree-structured learning models is to make subregions partitioned
by branches be less “impure”, in terms of the mixture of class labels, than the
unpartitioned dataset. For a particular branch, the most suitable free attribute for
further expanding (or partitioning), is the one by which the “pureness” is maximally
increased with expanding. That corresponds to selecting the attribute with maximum
information gain. As with ID3 learning, the most informative attribute will form the
root of a linguistic decision tree, and the tree will expand into branches associated
with all possible focal elements of this attribute. For each branch, the free attribute
with maximum information gain will be the next node, from level to level, until the
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tree reaches the maximum specified depth or the maximum class probability reaches
the given threshold probability.

4.2 Forward Merging Algorithm

From the empirical studies on UCI data mining repository [4], we showed that LID3
performs at least as well as and often better than three well-known classification al-
gorithms across a range of datasets (see [19]). However, even with only 2 fuzzy sets
for discretization, the number of branches increases exponentially with the depth of
the tree. Unfortunately, the transparency of the LDT decreases with the increasing
number of branches. To help to maintain transparency by generating more compact
trees, a forward merging algorithm based on the LDT model is proposed in this
section and experimental results are given to support the validity of our approach.

In a full developed linguistic decision tree, if any of two adjacent branches have
sufficiently similar class probabilities according to some criteria, so that these two
branches may give similar classification results and therefore can then be merged
into one branch in order to obtain a more compact tree. We employ a merging
threshold to determine whether or not two adjacent branches can be merged.

Definition 11 (Merging Threshold) In a linguistic decision tree, if the maximum
difference between class probabilities of two adjacent branches B1 and B2 is less
than or equal to a given merging threshold Tm, then the two branches can be merged
into one branch. Formally, if

Tm ≥ max
c∈C

|P(c|B1)− P(c|B2)| (16)

where C = {C1, · · · ,C|C|} is the set of classes, then B1 and B2 can be merged into
one branch M B.

Definition 12 (Merged Branch) A merged branch M B nodes is defined as

M B = 〈M j1, · · · ,M j|M B| 〉

|M B| are the number of nodes for the branch M B where the node is defined as:

M j = {F1
j , · · · , F

|M j |
j }

Each node is a set of focal elements such that Fi
j is adjacent to Fi+1

j for i =
1, · · · , |M j | − 1. If |M| > 1, it is called compound node, which means it is a
compound of more than one focal elements because of merging. The associate mass
for M j is given by
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mx (M j ) =
|M j |∑
i=1

mx(F
i
j ) (17)

where w is the number of merged adjacent focal elements for attribute j .

Based on (9), we can obtain:

P(Ct |x) =
|M B|∏
r=1

mxr (Mr ) (18)

Therefore, based on (10) and (17) we use the following formula to calculate the
class probabilities given a merged branch.

P(Ct |M B) =
∑

i∈Dt
P(Ct |xi)∑

i∈D P(Ct |xi )
(19)

For example, Fig. 2 shows the change in test accuracy and the number of leaves
(or the number of rules interpreted from a LDT) for different Tm on the wis-cancer
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Fig. 2 The change in accuracy and number of leaves as Tm varies on the wis-cancer dataset with
NF = 2. While the dot trial Tm = 0 is with NF = 2
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dataset. It shows that the accuracy is not greatly influenced by merging, but the
number of branches is greatly reduced. This is especially true for the curve marked
by ‘+’ corresponding to Tm = 0.3 where applying forward merging, the best accu-
racy (at the depth 4) is only reduced by approximately 1%, whereas, the number of
branches is reduced by roughly 84%.

4.3 Linguistic Constraints

Here we assume that the linguistic constraints take the form of θ = 〈x1 is θ1, . . . , xn

is θn〉, where θ j represents a label expression based on L j : j = 1, . . . , n. Consider
the vector of linguistic constraint �θ = 〈θ1, · · · , θn〉, where θ j is the linguistic con-
straints on attribute j . We can evaluate a probability value for class Ct conditional
on this information using a given linguistic decision tree as follows. The mass as-
signment given a linguistic constraint θ is evaluated by

∀Fj ∈ F j mθ j (Fj ) =
{ pm(Fj )∑

Fj ∈λ(θ j )
pm(Fj )

i f : Fj ∈ λ(θ j )

0 otherwi se
(20)

where pm(Fj ) is the prior mass for focal elements Fj ∈ F j derived from the prior
distribution p(x j ) on � j as follows:

pm(Fj ) =
∫
� j

mx(Fj )p(x j )dx j (21)

Usually, we assume that p(x j ) is the uniform distribution over� j so that

pm(Fj ) ∝
∫
� j

mx(Fj )dx j (22)

For branch B with s nodes, the probability of B given �θ is evaluated by

P(B| �θ) =
|B|∏
r=1

mθ jr
(Fjr ) (23)

and therefore, by Jeffrey’s rule [13]

P(Ct | �θ) =
|L DT |∑
v=1

P(Ct |Bv)P(Bv| �θ) (24)

The methodology for classification under linguistic constraints allows us to fuse
the background knowledge in linguistic form into classification. This is one of the
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advantages of using high-level knowledge representation language models such as
label semantics.

4.4 Linguistic Decision Trees for Predictions

Consider a database for prediction D = {〈x1(i), · · · , xn(i), xt(i)〉 |i = 1, · · · , |D|}
where x1, · · · , xn are potential explanatory attributes and xt is the continuous target
attribute. Unless otherwise stated, we use trapezoidal fuzzy sets with 50% overlap
to discretized each continuous attribute individually (xt ) universe and assume the
focal sets are F1, · · · , Fn and Ft . For the target attribute xt : Ft = {F1

t , · · · , F |Ft |
t }.

For other attributes: x j : F j = {F1
j , . . . , F

|F j |
j }. The inventive step is, to regard the

focal elements for the target attribute as class labels. Hence, the LDT4 model for
prediction has the following form: A linguistic decision tree for prediction is a set
of branches with associated probability distribution on the target focal elements of
the following form:

L DT = {〈B1, P(F1
t |B1), · · · , P(F |Ft |

t |B1)〉, · · · ,
〈B|L DT |, P(F1

t |B|L DT |), · · · , P(F |Ft |
t )|B|L DT |)〉}

where F1
t , · · · , F |Ft |

t are the target focal elements (i.e. the focal elements for the
target attribute or the output attribute).

P(F j
t |x) =

|L DT |∑
v=1

P(F j
t |Bv)P(Bv |x) (25)

Given value x = 〈x1, · · · , xn〉 we need to estimate the target value x̂t (i.e.
xi → x̂t ). This is achieved by initially evaluating the probabilities on target focal
elements: P(F1

t |x), · · · , P(F |Ft |
t |x) as described above. We then take the estimate

of xt , denoted x̂t , to be the expected value:

x̂t =
∫
�t

xt p(xt |x) dxt (26)

where:

p(xt |x) =
|Ft |∑
j=1

p(xt |F j
t ) P(F j

t |x) (27)

4 We will use the same name ‘LDT’ for representing both linguistic decision trees (for classifica-
tion) and linguistic prediction trees.
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Fig. 3 The prediction results obtained from SVR and LID3 without merging, where the data on
the left (1712-1921) are for training and the right (1921-1079) are for test

and

p(xt |F j
t ) = mxt (F

j
t )∫

�t
mxt (F

j
t ) dxt

(28)

so that, we can obtain:

x̂t =
∑

j

P(F j
t |x) E(xt |F j

t ) (29)

where:

E(xt |F j
t ) =

∫
�t

xt p(xt |F j
t ) dxt =

∫
�t

xt mxt (F
j

t ) dxt∫
�t

mxt (F
j

t ) dxt

(30)

We tested our model with a real-world problem taken from the Time Series Data
Library [8] and contains data of sunspot numbers between the years 1700-1979. The
input attributes are xT −12 to xT −1 (the data for previous 12 years) and the output
(target) attribute is xT , i.e. one-year-ahead. The experimental results for LID3 and
ε-SVR [6] are compared in Fig. 3. We can see the results are quite comparable.
More details are available in [20].
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5 Bayesian Estimation Tree Based on Label Semantics

Bayesian reasoning provides a probabilistic approach to inference based on the
Bayesian theorem. Given a test instance, the learner is asked to predict its class ac-
cording to the evidence provided by the training data. The classification of unknown
example x by Bayesian estimation is on the basis of the following probability,

P(Ck |x) = P(x|Ck)P(Ck)

P(x)
(31)

Since the denominator in (31) is invariant across classes, we can consider it as a
normalization parameter. So, we obtain:

P(Ck |x) ∝ P(x|Ck)P(Ck) (32)

Now suppose we assume for each variable x j that its outcome is independent of
the outcome of all other variables given class Ck . In this case we can obtain the
so-called naive Bayes classifier as follows:

P(Ck |x) ∝
n∏

j=1

P(x j |Ck)P(Ck) (33)

where P(x j |Ck) is often called the likelihood of the data x j given Ck . For a qualita-
tive attribute, it can be estimated from corresponding frequencies. For a quantitative
attribute, either probability density estimation or discretization can be employed to
estimate its probabilities.

5.1 Fuzzy Naive Bayes

In label semantics framework, suppose we are given focal set F j for each attribute
j . Assuming that attribute x j is numeric with universe � j , then the likelihood of
x j given Ck can be represented by a density function p(x j |Ck) determine from the
database Dk and prior density according to Jeffrey’s rule [13].

p(x j |Ck) =
∑

F∈F j

p(x j |F)P(F |Ck) (34)

From Bayes theorem, we can obtain:

p(x j |F) = P(F |x j )p(x j )

P(F)
= mx j (F)p(x j )

pm(F)
(35)
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where,

pm(F) =
∫
� j

P(F |x j )p(x j )dx j =
∑

x∈D mx j (F)

|D| (36)

Substituting 35 in 34 and re-arranging gives

p(x j |Ck) = p(x j )
∑

F∈F j

mx j (F)
P(F |Ck)

pm(F)
(37)

where P(F |Ck) can be derived from Dk according to

P(F |Ck) =
∑

x∈Dk
mx j (F)

|Dk| (38)

This model is called fuzzy Naive Bayes (FNB). If we weaken the independence

assumption, we can obtain a fuzzy semi-Naive Bayes (FSNB). More details of FNB
and FSNB can be found in [25].

5.2 Hybrid Bayesian Estimation Tree

Based on previous two linguistic models, a hybrid model was proposed in [18].
Given a decision tree T is learnt from a training database D. According to the
Bayesian theorem: A data element x = 〈x1, . . . , xn〉 can be classified by:

P(Ck |x, T ) ∝ P(x|Ck , T )P(Ck |T ) (39)

We can then divide the attributes into 2 disjoint groups denoted by xT = {x1, · · · , xm}
and xB = {xm+1, · · · , xn}, respectively. xT is the vector of the variables that are
contained in the given tree T and the remaining variables are contained in xB . As-
suming conditional independence between xT and xB we obtain:

P(x|Ck, T ) = P(xT |Ck, T )P(xB |Ck, T ) (40)

Because xB is independent of the given decision tree T and if we assume the
variables in xB are independent of each other given a particular class, we can
obtain:

P(xB |Ck, T ) = P(xB |Ck) =
∏
j∈xB

P(x j |Ck) (41)
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Now consider xT . According to Bayes theorem,

P(xT |Ck, T ) = P(Ck |xT , T )P(xT |T )
P(Ck |T ) (42)

Combining (40), (41) and (42):

P(x|Ck, T ) = P(Ck |xT , T )P(xT |T )
P(Ck |T )

∏
j∈xB

P(xl |Ck) (43)

Combining (39) and (43)

P(Ck |x, T ) ∝ P(Ck |xT , T )P(xT |T )
∏
j∈xB

P(x j |Ck) (44)

Further, since P(xT |T ) is independent from Ck , we have that:

P(Ck |x, T ) ∝ P(Ck |xT , T )
∏
j∈xB

P(x j |Ck) (45)

where P(x j |Ck) is evaluated according to 37 and P(Ck |xT , T ) is just the class
probabilities evaluated from the decision tree T according to 11.

We tested this new model with a set of UCI [4] data sets. Figure 4 is a simple
result. More results are available in [18]. From Figs. 4, we can see that the BLDT
model generally performs better at shallow depths than LDT model. However, with
the increasing of the tree depth, the performance of the BLDT model remains con-
stant or decreases, while the accuracy curves for LDT increase. The basic idea of
using Bayesian estimation given a LDT is to use the LDT as one estimator and the
rest of the attributes as other independent estimators. Consider the two extreme cases
for 45. If all the attributes are used in building the tree (i.e. xT = x), the probability
estimations are from the tree only, that is:
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on each dataset against the depth of the tree
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P(Ck |x, T ) ∝ P(Ck |xT , T )

If none of the attributes are used in developing the tree (i.e. x = xB), the probability
estimation will become:

P(Ck |x, T ) ∝
∏
j∈xB

P(x j |Ck)

which is simply a Naive Bayes classifier.

6 Linguistic Rule Induction

The use of high-level knowledge representation in data modelling allows for en-
hanced transparency in the sense that the inferred models can be understood by
practioners who are not necessarily experts in the formal representation framework
employed. Rule based systems inherently tend to be more transparent than other
models such as neural networks. A set of concise understandable rules can provide
a better understanding of how the classification or prediction is made. Generally,
there are two general types of algorithms for rule induction, top down and bottom
up algorithms. Top-down approaches start from the most general rule and specialize
it gradually. Bottom-up methods star from a basic fact given in training database and
generalize it. In this paper we will focus on a top-down model for generating linguis-
tic rules based on Quinlan’s First-Order Inductive Learning (FOIL) Algorithm [23].

The FOIL algorithm is based on classical binary logic where typically attributes
are assumed to be discrete. Numerical variables are usually discretized by parti-
tioning the numerical domain into a finite number of intervals. However, because
of the uncertainty involved in most real-world problems, sharp boundaries between
intervals often lead to a loss of robustness and generality. Fuzzy logic has been used
to solve the problem of sharp transitions between two intervals. Fuzzy rule induction
research has been popular in both fuzzy and machine learning communities as a
means to learning robust transparent models. Many algorithms have been proposed
including simple fuzzy logic rule induction [3], fuzzy association rule mining [27]
and first-order fuzzy rule induction based on FOIL [5, 16]. In this paper, we will
focus on an extension to the FOIL algorithm based on label semantics.

6.1 Linguistic Rules in Label Semantics

In Sect. 2 and 3, a basic introduction of label semantics is given and how it can be
used for data modelling is discussed. In this section, we will describe a linguistic
rule induction model based on label semantics. Now, we begin by clarifying the
definition of a linguistic rule. Based on def. 5, a linguistic rule is a rule can be
represented as a multi-dimensional logical expressions of fuzzy labels.
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Definition 13 (Multi-dimensional Logical Expressions of Labels) M L E (n) is the
set of all multi-dimensional label expressions that can be generated from the logical
label expression L E j : j = 1, . . . , n and is defined recursively by:

(i) If θ ∈ L E j for j = 1, . . . , n then θ ∈ M L E (n)

(ii) If θ, ϕ ∈ M L E (n) then ¬θ , θ ∧ ϕ, θ ∨ ϕ, θ → ϕ ∈ M L E (n)

Any n-dimensional logical expression θ identifies a subset of 2L1 ×. . . × 2Ln , de-
noted λ(n)(θ) (see example 3), constraining the cross product of logical descriptions
on each variable: Dx1 × . . . × Dx1 . In such a way the imprecise constraint θ on n
variables can be interpret as the precise constraint Dx1 × . . .× Dx1 ∈ λ(n)(θ)

Given a particular data, how can we evaluated if a linguistic rule is appropriate
for describing it? Based on the one-dimensional case, we now extend the concepts
of appropriateness degrees to the multi-dimensional case as follows:

Definition 14 (Multi-dimensional Appropriateness Degrees) Given a set of n-dimensional
label expressions M L E (n):

∀ θ ∈ M L E (n),∀x j ∈ � j : j = 1, · · · , n

μn
θ (x) = μn

θ (x1, · · · , xn) =
∑

〈F1,··· ,Fn〉∈λ(n)(θ)
(F1, · · · , Fn)

=
∑

〈F1,··· ,Fn〉∈λ(n)(θ)

n∏
j=1

mx j (Fj )

The appropriateness degrees in one-dimension are for evaluating a single label for
describing a single data element, while in multi-dimensional cases they are for eval-
uating a linguistic rule for describing a data vector.

Example 3. Consider a modelling problem with two variables x1 and x2 for which
L1 = {small (s), medium (med), large(lg)} and L2 = {low(lo), moderate
(mod), high(h)}. Also suppose the focal elements for L1 and L2 are:

F1 = {{s}, {s,med}, {med}, {med, lg}, {lg}}

F2 = {{lo}, {lo,mod}, {mod}, {mod, h}, {h}}

According to the multi-dimensional generalization of definition 6 we have that

λ(2)((med ∧ ¬s) ∧ ¬lo) = λ(2)(med ∧ ¬s) ∩ λ(2)(¬lo)

= λ(med ∧ ¬s)× λ(¬lo)
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Now, the set of possible label sets is obtained according to the λ-function:

λ(med ∧ ¬s) = {{med}, {med, lg}}

λ(¬lo) = {{mod}, {mod, h}, {h}}

Hence, based on def. 6 we can obtain:

λ(2)((med ∧ ¬s) ∧ ¬lo) = {〈{med}, {mod}〉, 〈{med}, {mod, h}〉,

〈{med}, {h}〉, 〈{med, lg}, {mod}〉, 〈{med, lg}, {mod, h}〉, 〈{med, lg}, {h}〉}

The above calculation on random set interpretation of the given rule based on λ-
function is illustrated in Fig. 5: given focal set F1 and F2, we can construct a 2-
dimensional space where the focal elements have corresponding focal cells. Repre-
sentation of the multi-dimensional λ-function of the logical expression of the given
rule are represented by grey cells.

Given x = 〈x1, x2〉 = 〈x1 = {med} : 0.6, {med, lg} : 0.4〉, 〈x2 = {lo,mod} :
0.8, {mod} : 0.2〉, we obtain:

μθ(x) = (m({med})+ m({med, lg}))× (m({mod})+ m({mod, h})+ m({h}))

= (0.6 + 0.4)× (0.2 + 0 + 0) = 0.2

And according to def. 6:

μn
¬θ (x) = 1 − μθ (x) = 0.8

In another words, we can say that the linguistic expression θ covers the data x
to degree 0.2 and θ can be considered as a linguistic rule. This interpretation of
appropriateness is highlighted in next section on rule induction.

Fig. 5 Representation of the
multi-dimensional λ-function
of the logical expression θ =
(med ∧ ¬ s) ∧ ¬lo showing
the focal cells F1×F2

{s}

{s, med}

{med}

{med, lg}

{lg}

{lo}{lo, mod}{ mod}{ mod, h}{h}
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6.2 Information Heuristics for LFOIL

In the last section, we have shown how to evaluate the appropriateness of using a
linguistic rule to describe a data vector. In this section, a new algorithm for learning
a set of linguistic rules is proposed based on the FOIL algorithm [23], it is referred
to as Linguistic FOIL (LFOIL). Generally, the heuristics for a rule learning model
are for assessing the usefulness of a literal as the next component of the rule. The
heuristics used for LFOIL are similar but modified from the FOIL algorithm [23]
so as to incorporate linguistic expressions based on labels semantics. Consider a
classification rule of the form:

Ri = θ → Ck where θ ∈ M L E (n)

Given a data set D and a particular class Ck , the data belonging to class Ck are
referred to as positive examples and the rest of them are negative examples. For the
given rule Ri , the coverage of positive data is evaluated by

T +
i =

∑
l∈Dk

μθ(xl) (46)

and the coverage of negative examples is given by

T −
i =

∑
l∈(D−Dk)

μθ (xl) (47)

where Dk is the subset of the database which is consisted by the data belonging to
class Ck . The information for the original rule Ri can by evaluated by

I (Ri ) = − log2

(
T +

i

T +
i + T −

i

)
(48)

Suppose we then propose to another label expression ϕ to the body of Ri to
generate a new rule

Ri+1 = ϕ ∧ θ → Ck

where ϕ, θ ∈ M L E (n). By adding the new literal ϕ, the positive and negative cov-
erage becomes:

T +
i+1 =

∑
l∈Dk

μθ∧ϕ(xl) (49)

T −
i+1 =

∑
l∈(D−Dk)

μθ∧ϕ(xl) (50)



262 Z. Qin, J. Lawry

Therefore, the information becomes,

I (Ri+1) = − log2

(
T +

i+1

T +
i+1 + T −

i+1

)
(51)

Then we can evaluate the information gain from adding expression ϕ by:

G(ϕ) = T +
i+1(I (Ri )− I (Ri+1)) (52)

We can see that the measure of information gain consists of two components. T +
i+1

is the coverage of positive data by the new rule Ri+1 and (I (Ri ) − I (Ri+1)) is the
increase of information. The probability of Ck given a linguistic rule Ri is evalu-
ated by:

P(Ck |Ri ) =
∑

l∈Dk
μθ(xl)∑

l∈D μθ(xl)
= T +

i

T +
i + T −

i

(53)

when P(Ck |Ri+1) > P(Ck |Ri ) (i.e., by appending a new literal, more positive
examples are covered), we can obtain that (I (Ri ) − I (Ri+1)) > 0. By choosing
a literal ϕ with maximum G value, we can form the new rule which covers more
positive examples and thus increasing the accuracy of the rule.

6.3 Linguistic FOIL

We define a prior knowledge base K B ⊆ M L E (n) and a probability threshold
PT ∈ [0, 1]. K B consists of fuzzy label expressions based on labels defined on each
attribute. For example, given fuzzy labels {small1 large1} to describe attribute 1 and
{small2 large2} to describe attribute 2. A possible knowledge base for the given two
variables is: K B = {small1, ¬small1, large1, ¬large1, small2, ¬small2, large2,
¬large2}.

The idea for FOIL is as follows: from a general rule, we specify it by adding new
literals in order to cover more positive and less negative examples according to the
heuristics introduced in last section. After developing one rule, the positive exam-
ples covered by this rule are deleted from the original database. We then need to find
a new rule based on this reduced database until all positive examples are covered.
In this paper, because of the fuzzy linguistic nature of the expressions employed,
typically data will be only partially covered by a given rule. For this reason we need
a probability threshold PT as part of the decision process concerning rule coverage.

A pseudo-code of LFOIL are consists of two parts which are described follows:

Generating a Rule

• Let rule Ri = θ1 ∧ · · · ∧ θd → Ck be the rule at step i , we then find the next
literal θd+1 ∈ K B − {θ1, · · · , θd} for which G(θd+1) is maximal.
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• Replace rule Ri with Ri+1 = θ1 ∧ · · · ∧ θd ∧ θd+1 → Ck

• If P(Ck |θ1 ∧ · · · ∧ θi+1) ≥ PT then terminate else repeat.

Generating a Rule Base

Let 	i = {ϕ1 → Ck, · · · , ϕt → Ck} be the rule base at step i where ϕ ∈ M L E .
We evaluate the coverage of 	i as follows:

CV (	i ) =
∑

l∈Dk
μϕ1∨···∨ϕt (xl)

|Dk| (54)

We define a coverage function δ : �1 × · · · ×�n → [0, 1] according to:

δ(x|	i ) = μ¬	i (x) = μ¬(ϕ1∨···∨ϕt )(x) (55)

= 1 − μ(ϕ1∨···∨ϕt )(x) = 1 −
t∑

w=1

μRw (x)

where δ(x|	i ) represents the degree to which x is not covered by a given rule base
	i . If CV is less than a predefined coverage threshold CT ∈ [0, 1]:

CV (	i ) < CT

then we generate a new rule for class Ck according to the above rule generation
algorithm to form a new rule base 	i+1 but where the entropy calculations are
amended such that for a rule R = θ → Ck ,

T + =
∑
l∈Dk

μθ(xl)× δ(xl |	i) (56)

T − =
∑

l∈(D−Dk)

μθ (xl) (57)

The algorithm terminates when CV (RBi+1) ≥ CT or CV (RBi+1)−CV (RBi )< ε

where ε ∈ [0, 1] is a very small value, i.e., if there are no improvements in covering
positive examples, we will stop the algorithm to avoid an infinite-loop calculation.

Given a rule base 	i = {ϕ1 → Ck, · · · , ϕt → Ck} and an unclassified data x,
we can estimate the probability of Ck , P(Ck |x), as follows: Firstly, we determine
the rule Rmax = ϕ j → Ck for which μϕ j (x) is maximal:

ϕ j = arg max
k∈	i

μϕk (58)
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Therefore, given the unclassified data x, rule Rmax is the most appropriate rule from
the rule base we learned. For the rule Rmax → Ck we evaluate two probabilities
pmax and qmax where:

pmax = P(Ck |ϕ j ) (59)

qmax = P(Ck |¬ϕ j ) (60)

We then use Jeffrey’s rule [13] to evaluate the class probability by:

P(Ck |x) = pmax × μϕ j (x)+ qmax × (1 − μϕ j (x)) (61)

We tested this rule learning algorithms with some toy problems and some real-world
problems. Although it does not give us very good accuracy but we obtained some
comparable performance to decision tree but with much better transparency. More
details are available in [21].

7 Conclusions and Discussions

In this chapter, label semantics, a higher level knowledge representation language,
was used for modeling imprecise concepts and building intelligent data mining sys-
tems. In particular, several linguistic models have been proposed including: Lin-
guistic Decision Trees (LDT) (for both classification and prediction), Bayesian es-
timation trees and Linguistic FOIL (LFOIL).

Through previous empirical studies, we have shown that in terms of accuracy the
linguistic decision tree model tends to perform significantly better than both C4.5
and Naive Bayes and has equivalent performance to that of the Back-Propagation
neural networks. However, it is also the case that this model has much better trans-
parency than other algorithms. Linguistic decision trees are suitable for both clas-
sification and prediction. Some benchmark prediction problems have been tested
with the LDT model and we found that it has comparable performance to a num-
ber of state-of-art prediction algorithms such as support vector regression systems.
Furthermore, a methodology for classification with linguistic constraints has been
proposed within the label semantics framework.

In order to reduce complexity and enhance transparency, a forward merging
algorithm has been proposed to merge the branches which give sufficiently simi-
lar probability estimations. With merging, the partitioning of the data space is re-
constructed and more appropriate granules can be obtained. Experimental studies
show that merging reduces the tree size significantly without a significant loss of
accuracy. In order to obtain a better estimation, a new hybrid model combining
the LDT model and Fuzzy Naive Bayes has been investigated. The experimental
studies show that this hybrid model has comparable performance to LID3 but with
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much smaller trees. Finally, a FOIL based rule learning system has been introduced
within label semantics framework. In this approach, the appropriateness of using a
rule to describe a data element is represented by multi-dimensional appropriateness
measures. Based on the FOIL algorithm, we proposed a new linguistic rule induction
algorithm according to which we can obtain concise linguistic rules reflecting the
underlying nature of the system.

It is widely recognized that most natural concepts have non-sharp boundaries.
These concepts are vague or fuzzy, and one will usually only be willing to agree to
a certain degree that an object belongs to a concept. Likewise, in machine learning
and data mining, the patterns we are interested in are often vague and imprecise. To
model this, in this chapter, we have discretized numerical attributes with fuzzy labels
by which we can describe real values. Hence, we can use linguistic models to study
the underlying relationships hidden in the data. The linguistic models proposed in
this chapter have advantages in the following respects5:

Interpretability

A primary motivation for the development of linguistic modeling is to provide an
interface between numerical scales and a symbolic scale which is usually composed
of linguistic terms. Transparency for a model is hard to define. In this chapter, we
employ an intuitive way of judging the transparency for decision trees - the number
of branches. By forward merging, the number of branches or the size of the tree is
reduced, so that we may conclude the transparency of trees is enhanced. We also
provide a methodology by which random sets of labels can be interpreted as logical
expressions and vice versa.

Robustness

It is often claimed that fuzzy or other ‘soft’ approaches are more robust than discrete
or ‘crisp’ approaches. In machine learning and data mining problems, the robustness
can be considered as the insensitivity of predictive performance of models to small
variations in the training data. In decision tree learning, soft boundaries are less
sensitive to small changes than sharp boundaries. Hence, the performance of the
linguistic models tends to be better than the corresponding discrete models because
of the inherent robustness of these soft boundaries.

Information Fusion

One of the distinctive advantages of linguistic models is that they allow for informa-
tion fusion. In this chapter, we discussed methods for classification with linguistic

5 Hüllermeier [7] argues that these aspects are the potential contributions of fuzzy set theory to
machine learning and data mining research.
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constraints and linguistic queries based on linguistic decision trees. Other infor-
mation fusion methods are discussed in [12]. How to efficiently use background
knowledge is an important challenge in machine learning. For example, Wang [26]
argues that Bayesian learning has limitations in combining the prior knowledge and
new evidence. We also need to consider the inconsistency between the background
knowledge and new evidence. We believe that it will become a popular research
topic in approximate reasoning.
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