
DeftRFID: A Lightweight and Distributed

RFID Middleware
Yingliang Lu

 #1
, Weifeng Zhang

 *2
, Zengchang Qin

*
, Yao Meng

 #
, Hao Yu

 #

#
 Fujitsu R&D Center CO., LTD.

13/F, Tower A, Ocean International Center, No.56 Dong Si Huan Zhong Road, Chaoyang District, Beijing, 100025,

P.R. China
1
luyl@cn.fujitsu.com

*
School of Automation Science and Electrical Engineering, Beijing University of Aeronautics & Astronautics

No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P.R. China
2
zwf@asee.buaa.edu.cn

Abstract Radio Frequency Identification (RFID) has become

a popular identification technology and the RFID application

market is undergoing explosive development. A successful

RFID application requires a dedicated middleware to

maximize the benefits of RFID technology. DeftRFID

proposed in this paper is a distributed, lightweight, and

scalable RFID middleware. Compared with other existing

RFID middleware, DeftRFID consists of three main layers

which can be distributed across multiple machines, and

provides friendly rules management interface to application

developers. It also can be applied to other kind of sensor

networks. Abundant functions of DeftRFID include: device

management, data filtering, aggregation, transformation,

dissemination, and functional Software Development Kit. Also,

a Laundry Visual Management System (LVMS) was developed

in this paper to show the utility of the middleware we proposed.

It is proved that DeftRFID has high practical value.

I. INTRODUCTION

Recent years Radio Frequency Identification (RFID) has

developed successfully [1], especially in supply chain

management (SCM) [2], and is considered to be dominant in

the identification technology in the near future. It attracts lot

of investments from governments and a number of

enterprises for its vast application prospects and inviting

profit. In traditional RFID applications such as access

control, there was one-to-one relationship [3] between

reader and application and therefore there was barely a need

for RFID middleware. However in the novel RFID

applications such as SCM, a number of readers need to be

deployed to capture variety of data. Hence, RFID

middleware has become the key component in developing

RFID applications because of its plentiful functions

including Reader and device management, Data

management, Process management and Application

development. The complete RFID system architecture with

a RFID middleware is shown in Fig 1.

In this paper we present a novel lightweight RFID

middleware named DeftRFID which has the ability to

perform all the functions discussed above. DeftRFID is a

modular and layered design which makes it flexible and

expandable. The main three layers include: Application

Interface Layer, Data Processing Layer, and Hardware

Abstraction Layer. DeftRFID middleware bridges the gap

between low-level sensor technology and high-level

enterprise applications. It can translate the primitive

information such as location and the time of sensing

emanating from RFID sensors into meaningful, actionable

information (e.g., out-of-stocks) which are needed for high-

level applications. In order to evaluate the performance of

DeftRFID, we build a Laundry Visual Management System

(LVMS) based on Delphi.

Fig 1. RFID system architecture

The rest of this paper is organized as follows: In section

II the related work in RFID middleware development are

discussed. The comprehensive architecture of DeftRFID is

shown in section III and we give detailed introduction of all

the components. After that the Laundry Visual Management

System based on DeftRFID is built in section IV and several

experiments are done. Section V gives our conclusion and

prospect of the future work.

II. RELATED WORK

RFID middleware design research has attracted a few

researchers and many important works have been proposed.

The most related work to our research is FlexRFID [4] [5]

proposed by Ajana. FlexRFID is a simple and smart RFID

middleware which can manage and monitor RFID readers or

other types of sensing devices, as well as process

dynamically generated high volumes of noisy RFID data.

FlexRFID is organized as a four-tier architecture consisting

of application abstraction layer (AAL), business event &

data processing layer (BEDPL), business rules layer (BRL),

978-1-4244-7177-5/10/$26.00 © 2010 IEEE ISSNIP 2010181

and device abstraction layer (DAL). The Device Abstraction

Layer of the FlexRFID middleware is responsible for

interaction with various devices and data sources

independent of their characteristics. The BEDPL acts as a

mediator between the DAL and the AAL. Services provided

by the BEDPL are data dissemination, data aggregation,

data transformation, data filtering, duplicate removal, and

data replacement. While FlexRFID provides all data

processing capabilities along with the security and privacy

features included in the data processing layer, it still need to

be extended to support EPC standard. Also a complete

system using various devices has not been developed.

Auto-ID Center has developed a suite of software named

Savant [6] [7] for free. Savant has the ability to collect,

accumulate and process Electronic Product Code (EPC) [8]

data obtained from several RFID readers. Savant has a

hierarchical architecture: Event Management System (EMS),

Real-time In-memory Data Structure (RIED), and Task

Management System (TMS). While Savant possesses many

advantages such as processing massive flow on information

but reduced network traffic, it is in lack of functionality for

addressing business rules management, dealing with all

types of sensor devices and providing data dissemination,

filtering, and aggregation.

Another important RFID middleware is MDI-SMURF

first proposed by Jeffery [9] [10] [11]. MDI-SMURF is an

RFID middleware platform organized as a pipeline of

processing stages with an associated uncertainty-tracking

shadow pipeline. It aims to realize the Metaphysical Data

Independence (MDI), a layer of independence that shields

applications from the challenges that arise when interacting

directly with sensor devices. In MDI-SMURF, data from

readers flow into Temporal-SMURF, a smoothing filter that

uses its statistical framework to correct for dropped readings

common in RFID data streams. These cleaned readings are

then streamed into Spatial-SMURF, a module that extends

Temporal-SMURF’s statistical framework to address errors

and semantic issues that arise from multiple RFID readers

deployed in close proximity. Finally a simple translation

module converts the temporally and spatially cleaned

readings to MDI readings by the vector representation. The

principle contribution of MDI-SMURF is that it incorporates

a novel statistical framework which enables it to continually

and adaptively correct for the temporal and spatial errors

associated with RFID data and produce data corresponding

to the MDI interface. However, MDI-SMURF middleware

provides no approach to defining rules for end-users.

The attractive market prospects of RFID applications

naturally attract many “gold”. A number of prestigious

companies have developed their own RFID middleware

products such as Microsoft BizTalk RFID [12], Oracle

Fusion [13], and Sun RFID Middleware [14].

The above middleware respectively have their own fine

features and defects. Literature [15] shows there are still

many open issues after analysing the application

requirements and RFID constraints. There is a conflict

between the increase of readers and the real-time processing

ability. Flexibility, reliability, and privacy protection also

attract more and more attention. In addition, the information

captured by a reader is usually of interest not only to a

single application, but to a diverse set of applications across

an organization and its business partners. Hence, different

latencies need to be supported, since the desired notification

latency depends upon the applications.

The main motivation of designing DeftRFID is to provide

a lightweight and distributed middleware. Compared with

the above middleware, the distinguishing characteristics of

the proposed middleware are: (i) DeftRFID middleware

adopts distributed architecture which makes it flexible,

portable, lightweight, and free to expand. (ii) The rules used

to do data aggregation and data transformation can be easily

defined by user by the form of IF-THEN representation.

This means the rule base in our RFID middleware could be

flexibly made according to the specific application. (iii)

DeftRFID provides a friendly and functional application

program interface to facilitate the application developers.

These superiorities make DeftRFID especially fit for

developing small-scale and low-cost enterprise applications.

III. DEFTRFID MIDDLEWARE ARCHITECTURE

The DeftRFID middleware design provides the

applications a device neutral, easy-to-use interface. It

consists of three layers: Application Interface Layer (AIL),

Data Processing Layer (DPL), and Hardware Abstraction

Layer (HAL). By using distributed architecture design, the

three layers of the DeftRFID middleware can separately run

on different machines and communicate with each other

through TCP sockets [16]. A diverse set of applications

across an organization are interested in the captured

information and different applications have different latency

requirement. While other present RFID middleware such as

FlexRFID mentioned in section II broadcast the captured

data with different latencies to deal with this problem,

DeftRFID adopts the strategy that it transmit data to

applications only when the applications send a data query

command. Fig 2 is a topological graph of typical application

based on the DeftRFID middleware.

This distributed architecture provides possibility to build

large scale sensor networks. On one hand, every layer of the

middleware concentrates on its own responsibilities. On the

other hand three layers complete the tasks by mutual

cooperation. This architecture provides at least four

advantages: Firstly, users can be geographically separate

which is important for large corporations, where

applications based on company-wide data are in different

locations. Secondly, using multiple machines can improve

performance and scalability. It significantly promotes the

processing capability of the system. Thirdly, distributed

architecture facilitates the modular system design. Hardware

devices and software services can be added as modules with

little efforts. Finally, this kind architecture can reduce

maintenance costs. In distributed system, the layers

communicate with each other through interface and do not

need to know how the internal structure is implemented.

The effect of this separation is that any changes to layer’s

implementation do not affect its interface. This allows

unthinkable flexibility.

182

HardwareHardware Abstraction LayerData Processing Layer
ApplicationsApplication Interface Layer User1 User2 User3

RFID readers Other sensers Industrial automation devices
WLAN/GPRS

WLAN

Fig 2. Typical topological graph of DeftRFID

In the following, we will focus on the implementation

details of the three layers as shown in Fig 3.

A. Hardware Abstraction Layer (HAL)

The Hardware Abstraction Layer of DeftRFID

middleware is responsible for concealing the complexity of

diverse hardware devices. As shown in Fig 2, this layer can

be distributed on multiple parallel machines. The main

services provided by HAL are described as follows:

Diverse devices management: DeftRFID middleware

support not only RFID sensors but also other sensors and

industrial automation devices (e.g., motor, alarm). Devices

can be added or deleted by user and the middleware

provides one management thread for every device

respectively. Hence, users can easily configure every device

by sending device configuration command to these threads.

DeftRFID also support variety of interface including USB,

serial port, and Ethernet port.

Low-level functions: the HAL provides basic functions

including activating / shutting down devices, reading tag

data, writing data to tags, etc.

Duplicate removal: In traditional RFID middleware design,

this function is usually put in the upper layer such as data

processing layer. However, DeftRFID moves this module

into the HAL to reduce the data stream flowed into upper

layer so that the network load can be relieved. It is

significantly valuable when the number of sensors increases

briskly.

B. Data Processing Layer (DPL)

The Data Processing Layer (DPL), the core of DeftRFID

middleware, acts as a mediator between the AIL and the

HAL. The DPL provides a number of important services:

data aggregation, data transformation, data filtering, data

dissemination, data storage & query, and order transmission.

The procedure of data processing is described as follows:

The Data storage & query module is responsible for storing

and retrieving data. Here the data flowed from the HAL is

first stored in the data cache and then flow into the data base.

Also the data cache is inquired first when executing data

query. The effectiveness of this measure will be tested in

section IV. The Data filtering module extracts the most

useful subsets of data. The filtered data has implicit

meanings and associated relationships with other data, and

need to be aggregated into summaries or proper inferences

for applications. This service is provided by the Data

aggregation module. Step further, the Data transformation

module transforms the data into business events and deal

with these events according to the rules stored in the rule

base. The Data dissemination module takes charge of

disseminating data to upper layer. And the Order

Transmission module has tow functions. One is to tell the

HAL how to deal with the events detected by the Data

Transformation module. The other is sending the HAL the

orders such as reader’s basic information request and motor

controlling commands from the AIL.

Fig 3. DeftRRFID middleware architecture

For the Rule management module makes our middleware

distinguishing, we focus on it in the following.

 Considering different kinds of applications using

DeftRFID middleware may need to define rules to detect

events and process them using the services provided by the

middleware, we design the Rule Management module, an

important component, by which users can add or delete

rules easily. In DeftRFID all events and rules are required to

be defined in a standard form. First we give the formal

definition of event that is similar to the description in the

literature [17] [18] [19].

Definition 1: (Primitive event). PES={ PE1 , PE2 , … , PEn }

is a set of primitive events. Any primitive event has the

following form:

183

<ID , location, time, data >

where ID is the identification of a device, “time”,

“location”, and “data” are respectively the time stamp,

location parameters of the event, and the corresponding

data .

For example, primitive event “<T1, R1, 5, D>” means

tag T1 is observed by read R1 when time 5. Primitive events

are the basic or core events turn from captured data. Based

on primitive events, complex event can be defined

recursively.

Definition 2: (Complex event). Complex event (CES) is a

sequence of events recursively defined based on primitive

events using four underlying operations “and (&)”, “or

(|)”, “not (~)”, “followed (→)”.

(i) E ∈PES : E ∈CES

(ii) If θ , α ∈ CES, then
~

θ , θ & α , θ | α , θ
→

α

∈CES

Using the above two definitions, users can define their

own events flexibly according to need. For instance event

“(θ | α) → ω ” means any of events θ and α occurs,

followed by occurrence of event ω . In the rest of this paper

both primitive events and complex events are abbreviated to

events.

In our definition of rules, there are another two important

components we call them constraint and response.

“constraint” constrains the four elements of a event while

“response” means how the middleware deal with the events

after detection. A vivid example of rules combine these

three components together can be seen in next section.

The rules can be defined according to use. For example

we define data transformation rules to guide the Data

transformation module. The Rule management module of

DPL collects the events of the rules in rule base. These

events are sent to the Data transformation module which is

responsible for trying to extract such kinds of events from

captured information. Finally once the events match, the

corresponding responses are returned to the Order

transmission module. Also, we can define filtering rules

which will be used in the Data filtering module. These two

kinds of rules are only examples. Actually, the kinds of

rules are not confined to these examples. This mechanism

endows the DeftRFID middleware with great flexibility and

usability.

To prevent conflicts, once user add a new rule to the rule

base, the Rule Management module will check whether

conflicting rules already exist in the rule base and reject the

new rule when conflict present.

C. Application Interface Layer (AIL)

The Application Interface Layer of DeftRFID provides

friendly and functional interface to application developers

by Dynamic Link Library (DLL). This layer provides the

possibility to build lightweight and portable enterprise

applications.

IV. LAUNDRY VISUAL MANAGEMENT SYSTEM

In order to illustrate the value and maturity of the

DeftRFID middleware, we build a Laundry Visual

Management System (LVMS) based on DeftRFID. The

LVMS is designed using Delphi. The hardware used in

testing consists of continuous current motors, Fujitsu RFID

reader TFU-RW311, Fujitsu RFID tag WT-A511 [20]

which is an enhanced UHF washable tag featuring

downsized dimensions and heat-sealing capability, and

other necessary automation devices.

Garment in the laundry are attached with tags so that they

can be tracked. Combining the DeftRFID middleware and

Fujitsu UHF tag technology, laundries will greatly improve

receiving, shipping, and tracking garment while keep the

cost low by improving workflow and efficiency. Fig 4

shows the diagram of the LVMS.

Fig 4. Overview of the LVMS

The core of the LVMS is DeftRFID. Based on this

middleware abundant applications are developed, including

Outlet Visual Management (OVM), Cleaning Workshop

Visual Management (CWVM), Process Visualization (PV).

Distribute architecture and independence of other run time

library make LVMS lightweight and easy to be deployed.

The OVM module is responsible for managing the garment

in the outlet such as recording the information of customers

when check in while deleting the information when check

out, listing information of all the garment, etc. The service

from CWVM is mainly tracking the garment in the process

of cleaning.

Using the interface provided by DeftRFID, LVMS can

define rules with little effort. As an example, one of the

rules which is used in LVMS is that the motor which drives

the conveyor belt should be stopped when a garment is

detected twice within a certain period of time. Using the

rule definition introduced in section III, this rule can be

formally expressed as follows.

EVENT: E1
 →

E2

CONSTRAINT: E1.ID=E2.ID

 &

E1.location=E2.location=CONVEYOR

 & 50sec<E2.time-E1.time<60sec

RESPONSE: STOP MOTOR

RULE: if EVENT, CONSTRAINT, then RESPONSE

This is only a tip of the iceberg. The DeftRFID

middleware supports flexible rule definition.

Also we test the response time of DeftRFID. The

response time is the time taken by DeftRFID to execute an

API when requested by a client application. In our

middleware, the data exchange though network between

layers may become the obstacle to improve the

middleware’s response time. For this reason, we add a Data

cache into the DPL and moved some data processing

184

modules such as duplicate removal to the Hardware

Abstraction Layer (HAL). To prove the effectiveness of

these measures, we compared the performance of DeftRFID

and that with all data processing modules in DPL. The API

used here is REFRESH_LIST, which returns all the tag IDs

and the corresponding customer information of the current

garment in a cleaning workshop.

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

Number of tags

R
e
s
p
o
n
s

e
 t

im
e
 (

m
s
)

optimized module distribution

traditional module distribution

Fig 5. Response time

Fig 5 shows that when the number of tags in the networks

increased, the response time of the middleware which

optimized module distribution rose much more slowly than

that with traditional module assigning. It is proved that

distributing data processing modules in reason is an

effective method to improve the performance of DeftRFID

middleware.

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of tags

A
v
e
ra

g
e
 m

e
m

o
ry

 u
s
a

g
e
 (

B
y
te

)

optimized module distribution

traditional module distribution

Fig 6. Average memory usage

Optimized distribution of data processing modules can

also effectively reduce the memory usage of the central

server in DeftRFID as shown in Fig 6. We tested average

memory utilized by DeftRFID using the REFRESH_LIST.

In the experiment, we called the REFRESH_LIST API ten

times, calculated the average memory usage of the central

server and gave the comparison between the memory usage

when the module distribution was optimized and that with

traditional module distribution.

0 50 100 150 200 250 300 350 400
2000

4000

6000

8000

10000

12000

14000

Time (min)

R
u
n
ti
m

e
 m

e
m

o
ry

 (
K

B
)

Fig 7. Runtime memory usage of HAL

0 50 100 150 200 250 300 350 400
0

2000

4000

6000

8000

10000

12000

Time (min)

R
u
n
ti
m

e
 m

e
m

o
ry

 (
K

B
)

Fig 8. Runtime memory usage of DPL

We also did an experiment to examine the runtime

memory usage of DeftRFID over a period of 6 hours. In this

experiment, 2 different clients were connected to DeftRFID

simultaneously and the number of tags increased with time

from zero to ten. The above graphs Fig 7 and Fig 8

respectively represent the runtime memory usage of HAL

and that of DPL which demonstrate that the DeftRFID

middleware is lightweight.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the design of DeftRFID, a

lightweight and distributed RFID middleware. DeftRFID

middleware has three important layers: the Hardware

Abstraction Layer (HAL), the Data Processing Layer (DPL),

and the Application Interface Layer (AIL). As one

important characteristic of DeftRFID, a distributed

architecture is adopted, so that these three layers can be

deployed on multiple machines. It makes DeftRFID

especially fit for the applications where both devices and

end-users are separated geographically. DeftRFID provides

ample functionalities including not only the common

functions such as data filtering, transformation, aggregation,

dissemination and device management, but also functional

Software Development Kit (SDK) and friendly rule

management interface. Finally we developed Laundry

185

Visual Management System (LVMS) to demonstrate the

functionality of DeftRFID in real business system.

In the future work, the following can be done to improve

the performance of DeftRFID: develop additional HAL

device drivers to increase the range of supported devices;

construct a highly compact RFID data by incorporating

efficient data compression algorithms to reduce the load of

central server and relieve the traffic of networks.

REFERENCES

[1] S. Polniak, The RFID Case Study Book: RFID Application Stories

from Around the Globe, Abhisam Software, 2007.

[2] Q. Sheng, X. Li, and S. Zeadally, “Enabling Next-Generation RFID

Applications: Solutions and Challenges,” IEEE Computer, Vol. 41,

No. 9, Sep. 2008.

[3] C. Floerkemeier, C. Roduner, and M. Lampe, “RFID Application

Development with the Accada middleware Platform,” IEEE Systems

Journal, Vol. 1, No. 2, pp. 82-94, Dec. 2007.

[4] M. E. Ajana, H. Harroud, M. Boulmalf, and H. Hamam, “FlexRFID:

A Flexible Middleware for RFID Applications Development,” in:

Proc. WOCN’09, pp. 1-5.

[5] M. E. Ajana, M. Boulmalf, H. Harroud, and H. Hamam, “A Policy

Based Event Management Middleware for Implementing RFID

Applications,” in: Proc. WIMOB’09, pp. 406-410.

[6] T. Ishikawa, Y. Yumoto, M. Kurata, M. Endo, S. Kinoshita, F.

Hoshino, S. Yagi, and M. Nomachi, “Applying Auto-ID to the

Japanese Publication Business to Deliver Advanced Supply Chain

Management, Innovative Retail Applications, and Convenient and

Safe Reader Services,” Auto-ID Center, Keio University, Oct. 2003.

[7] D. J. Glasser, K. W. Goodman, and N. G. Einspruch, “Chips, Tags

and Scanners : Ethical Challenges for Radio Frequency

Identification,” Ethics and Information Technology, Vol. 9, No. 2,

pp. 101-109, Jul. 2007.

[8] (2010) The EPC Global website. [Online]. Available:

http://www.epcglobalinc.org/

[9] S.R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom, “A

Pipelined Framework for Online Cleaning of Sensor Data Streams,”

in: Proc. ICDE’06, pp. 140-145.

[10] S. R. Jeffery, G.Alonso, M. J. Franklin, W. Hong, and J. Widom,

“Declarative support for sensor data cleaning,” Lecture Notes in

Computer Science In 4th International Conference on Pervasive

Computing, Vol. 3968, 2006, pp. 83-100.

[11] S. R. Jeffery, M. Garofalakis, and M. J. Franklin, “Adaptive

cleaning for RFID data streams,” in: Proc. VLDB’06, pp. 163-174.

[12] (2010) The Microsoft BizTalk Server website. [Online]. Available:

http://www.microsoft.com/biztalk/

[13] K. Frank, “Oracle fusion middleware and Microsoft interoperability:

address enterprise-wide needs,” Technical Report, Jan. 2005.

[14] (2010) The Sun RFID website. [Online]. Available:

http://www.sun.com/software/products/rfid/

[15] C. Floerkemeier and M. Lampe, “RFID middleware design –

addressing application requirements and RFID constraints,” in: Proc.

SOC’05, pp. 219-224.

[16] (2010) Orbited website. [Online]. Available:

http://orbited.org/wiki/TCPSocket/

[17] H. Gonzalez, J. Han, X. Li, and D. Klabjan, “Warehousing and

Analyzing Massive RFID Data Sets” in Proc. ICDE’06, pp. 83-92.

[18] W. Wang, J. Sung, and D. Kim, “Complex Event Processing in EPC

Sensor Network Middleware for Both RFID and WSN”, in: Proc.

ISORC’08, pp. 165-169.

[19] D. Gyllstrom, E. Wu, H. J. Chae, Y. Diao, P. Stahlberg, and G.

Anderson, “SASE: Complex Event Processing over Streams”, in:

Proc. CIDR’07.

[20] (2010) Fujitsu fontech website. [Online]. Available:

http://www.frontech.fujitsu.com/en/

186

