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Abstract—For the time series prediction problem, the re-
lationship between the abstracted independent variables and
the response variable is usually strong non-linear. We propose
a neural network fusion model based on k-hyperplanes for
non-linear regression. A k-hyperplane clustering algorithm is
developed to split the data to several clusters. The experiments
are done on an artificial time series, and the convergence of
k-hyperplane clustering algorithm and neural network gradient
training algorithm is examined. The dimension of inputs affect
the clustering performance very much. Neural network fusion
can get some compensation in performance. It is shown that
the prediction performance of the model for the time series is
very good. The model can be further exploited for many real
applications.

Keyword k-hyperplane clustering algorithm, Neural network
fusion model, Gradient descent learning, Non-linear regression.

I. INTRODUCTION

Most widely known prediction tools use linear regression

models. The purpose of regression analysis is to model and

analyze the relationship between a response variable and one

or more independent variables, thus future state of the response

variable can be predicted through the created model. For

constructing models, a least-squares technologies is usually

adopted to find the regression coefficients using the collected

observations of input and output variables. The estimation pro-

cess of dependent variables by statistical regression analysis is

carried out based on input variables that take numeric values.

However, for real-world problems, the observations are usually

uncertain and imprecise, due to epistemic difference of people

and/or random measurement errors. The relationship between

the independent variables and the response variable is usually

strongly non-linear. This requires an integrated treatment of

uncertainty when modeling regression.

For regression problems, three types of approaches are

generally used [1]: (1) linear programming [2], [3], [4], [5],

[6], [7], [8], [9], [10], [11], [12], [13], least-squares [14],

[15], [16], [17], [18], [19], [20], and support vector machine

[21], [22], [23], [24]. In a latest research literature, Chen and

Hsueh[1] proposed a fuzzy regression approach that uses the

least-squares method to minimize the total estimation error

of the distance between the observed and estimated fuzzy

responses. Another approach is to split a large task into several

small tasks, each of which is completed by using single

regression analysis. For example, cluster-wise fuzzy regression

analysis was investigated in [26], [25]. In [25], minimization of

particular objective functions yields simultaneous estimates for
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the parameters of c-regression models, together with a fuzzy c-

partitioning of the data. In [26], authors apply fuzzy clustering

techniques into the fuzzy regression model fitting at each

step of procedure. We propose a neural network fusion model

based on k-hyperplanes that represent a set of linear functions

between independent variables and the response variable. A

novel k-hyperplane clustering algorithm is developed to split

the training data into several clusters. The estimate of a sample

point can be obtained through the neural network fusion. The

experiment is done on an artificial time series. We examine the

convergence of the clustering algorithm and the neural network

training, respectively, and compare the results of nonlinear

regression with two input history variables to that with three

history variables.

II. THE K-HYPERPLANE CLUSTERING ALGORITHM

There are many clustering algorithms for solving different

problems, such as k-means, FCM, etc. The simplest approach

is the k-means algorithm. It partitions the points in data set into

k clusters. This iterative partitioning minimizes the sum of the

within-cluster sums of point-to-cluster-centroid distances over

all clusters. Given a data set S = {p1, ..., pn}, pi = (xi, yi),
which is partitioned into k clusters, satisfying the conditions:

• S = ∪k
i=1Si,

• Si ∩ Sj = φ, and

• Si �= φ.

For multiple regression, the purpose is to make all points in a

cluster fall into a hyperplane. However, due to the uncertainty

and nonlinear relationship between independent variables and

the dependent variable, we need to find a hyperplane, to

which, all points are as close as possible, so that the estimates

are closer to the real measures. Therefore, to find such a

hyperplane, the criteria is set to the distance from a point to

a hyperplane. Given the j-th hyperplane y = aj0 + aj1x1 +
aj2x2 + ... + ajnxn, and a point pi = (xi1, xi2, ...xin, yi), the

distance dij from pi to the j-th hyperplane can be calculated

by:

dij =
|aj1xi1 + ... + ajnxin − yi + aj0|√

a2
j1 + ... + a2

jn + 1
(1)

The k-plane clustering algorithm is subject to the minimal sum

of the within-cluster sums of point-to-hyperplane distances

over all clusters:

J =
k∑

j=1

∑
pi∈DC

dij (2)

Initially, k clusters are produced randomly, and correspond-

ingly k hyperplanes are produced based on the k clusters.

Then all points in the data set will be relocated. The distances
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from each point in the data set D to all hyperplanes are

calculated, and a point will belong to the hyperplane, to which,

the distance from the point is minimum. Repeat the process

until the change of distance sum J is less than a positive

threshold α (e.g. α < 0.05).

Algorithm 1 shows the pseudocode of the new clustering

algorithm.

Algorithm 1 The k-hyperplane clustering algorithm

1: Randomly produce k clusters {C1, ..., Ck};

2: J = 0;

3: for c = 1 : k do
4: produce a hyperplane hpc;

5: Jc =
∑

pi∈c dic;

6: J = J + Jc;

7: end for
8: Jold = J ; J = J + α + 1;
9: while (|Jold − J | > α) do

10: for i = 1 : n do
11: for j = 1 : k do
12: calculate dij ;

13: end for
idxi = argminj=1:k(dij);

14: end for
15: J = 0;
16: for c = 1 : k do
17: produce a hyperplane hpc;

18: Jc =
∑

pi∈c dic;
19: J = J + Jc;
20: end for
21: end while

III. THE NEURAL NETWORK MODEL FOR INFORMATION

FUSION

A. The neural network model

The neural network is based on the k-estimates ỹ1 to

ỹk obtained by the k linear regression equations fi(x),
i = 1, ..., k, each of which represents the mapping function

between independent variable and the dependent variable for

the corresponding cluster. Fig. 1 shows the structure of the

neural network.
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Fig. 1. The structure of the neural network model based on k-hyperplanes

Assuming we have obtained k clusters by the k-hyperplane

algorithm. For each cluster Cj in the training data set, we can

determine a hyperplane Pj in the (n+1)-dimension space. For

each sample point pi in the training data set, we can obtain

an approximate value τij with j-th linear function. Therefore,

we have output matrix:

T =

⎛
⎜⎜⎝

τ11 τ12 ... τ1k

τ21 τ22 ... τ2k

... ... ... ...
τN1 τN2 ... τNk

⎞
⎟⎟⎠

Hence, the approximation function from the neural network

is of the form:

ỹ = F (xi) =
k∑

j=1

wjfj(xi) + w0. (3)

Define h0j = 1, j = 1, ..., k, and hij = τij , i = 1, ..N ,

j = 1, ..k., then we have:

ỹ = F (xi) =
k∑

j=0

wjhij . (4)

Hence, for N samples and k hyperplanes, we have matrix

H:

H =

⎛
⎜⎜⎝

1, h11 h12 ... h1k

1, h21 h22 ... h2k

... ... ... ...
1, hN1 hN2 ... hNk

⎞
⎟⎟⎠

The final estimate of the dependent variable y is:

ỹ = W × H ′. (5)

where, W = {w0, ..., wk}
B. Gradient descent learning

Gradient descent learning approach calculates the gradient

of the cost function only evaluated on a single training

example. The parameters are then adjusted by an amount

proportional to this approximate gradient. Therefore, the pa-

rameters of the model are updated after each training example.

Thus the network arrives to a stable state with a local minimum

of the cost function.

Assume database is partitioned into k clusters, where 1 <
k < N . Each cluster corresponds to a hyperplane. With

multiple linear regression, we can obtain a linear equation for

each hyperplane.

For each sample, we can have k estimates obtained by the

k linear equations. According to Equation (4), for N samples,

we define the cost function E as sum of squared errors of

estimates and real values as below:

E =
1
2

N∑
i=1

((ỹi − yi)2 =
1
2

N∑
i=1

(
k∑

j=0

wjhij − yi)2 (6)

Takefuji and Szu [27] has proved that the convergence
of a neural network does not depend on the model. As
long as the output vi is the continuous, differentiable and
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monotonous increasing function of input ui, namely, there
exists the relationship between outputs and inputs of neurons
dvi

dui
> 0, the neural network always converges with a negative

grade. Finally, the neural network arrives at a stable state with
dE
dt = 0. Here we define the activation function as below:

vi =

⎧⎨
⎩

1 ui ≥ 1
ui 0 ≤ ui < 1
−1 ui < −1.

(7)

The weight in each cell indicates the state of each neuron

(i.e. the output of each neuron). As defined in the activation

function (7), the output vi and input ui of each neuron have

the relationship vi=ui, if ui ∈ [−1, 1]. Therefore, we have:

Δu = Δw = − ∂E

∂wi
× Δt. (8)

Assuming updating time Δt = 1, then we have:

Δwj = γ(
k∑

j=0

wjhij − yi)hij =
N∑

i=1

(ỹi − yi)hij . (9)

where γ is the learning factor. Given a training sample x, we

can calculate the value of Equation (9), which will be as a

correction of a weight. Initially, w is set to be a real value

in [-1,1] randomly. The gradient descent training algorithm

is different from the normal gradient algorithm that is only

evaluated on a single training example in each step. Our

gradient algorithm is evaluated with the whole cost, as any

slight change of weights will lead to the change of the whole

cost. In the other words, the whole cost forms the force that

propels the change of weights. This could cause the whole cost

fast converge to a local minimum. However, the training factor

γ should be very small in order to make the cost converge. In

our experiments, γ is set to 0.00001.

IV. EXPERIMENTS

A. The artificial time-series data

In order to test the model described above, an artificial time

series is created from the non-linear equation (10).

xt+1 = ax2
t−2 + bxt + εt (10)

Obviously, the non-linear regressor order of this time series

is 2 (it is generated from two past values). We should note

the lack of the xt−1 term, as well as the presence of the noise

εt. The series does not contain any exogenous variable. Fig.

2 shows a time series with 1000 points obtained by Equation

(10) with a = −0.8, b = 0.9 and the noise εt = rand()∗0.1∗
max(time series). We sample the time series to produce two

sets of data. One is a set of three dimension data with two

input variables xt−2 and xt and one dependent variable xt+1;

the other is a set of four dimension data with additional input

variable xt−1. We will examine the performance of the model

for the two cases.

The steps of the experiment are described as below:

• produce k clusters with the k-hyperplane clustering al-

gorithm, each of which corresponds to a hyperplane

represented by a linear function;
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Fig. 2. A time series with 1000 points

• estimate the training set with the k linear functions, and

thus each sample will have k estimates, which will be

inputs of the neural network;

• run the gradient training algorithm to train the neural

network, so that a set of weights can be obtained;

• estimate the test set with k linear functions;

• use the trained neural network to fuse the the k groups

of estimates of the test data;

• evaluate the prediction accuracy through calculating the

mean squared errors of the estimates to the real values,

and the maximum errors for all test data.

In the experiments, the parameter k is fixed to 8. The mean

squared error is calculated across the test database:

MSE =
1

|DB|
∑

i∈DB

(y(i) − ỹ(i))2. (11)

B. Results on the three dimension data set

The first experiment is done on the three dimension samples

with two input variables xt−2 and xt, through which we

predict the dependent variable xt+1. When running the k-

hyperplane clustering algorithm on the three-dimension train-

ing data, the termination criterium (the positive threshold α)

is set to 0.05. It indicates that the iteration will be terminated

when the difference between the sum of distances for current k
clusters and that for last k clusters is less than 0.05. If the value

of α is too small, when the cost be convergent to a certain

value, it arrives at an oscillation state. Fig. 3 (a) displays the

convergence process of the clustering algorithm for the three

dimension data. The convergence speed is very fast, and by

the 6-th iteration, the cost almost stops the decreasing. Finally,

the sum of all distances converges to around 15. The process

goes only for 12 iterations.

We also observe the convergence of the neural network

when training it. The cost almost drops to zero from around

1200 in 40 iterations, and the dynamic system arrives at a

local optimum (see Fig. 3 (b)).

Now let’s see the prediction accuracy for the three dimen-

sion data. The experimental results are presented in scatter

plot with the predicted values as y-axis against real values as

x-axis (see Fig. 4). All error-free predictions should fall on
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Fig. 3. convergence for 3-dim data

the line y = x. The mean squared error is 0.00018695, and

the maximum error is 0.0849. It can be seen the prediction

values fit the line y = x very well.
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Fig. 4. Scattering the estimates against the real values for 3-dim data

C. Results on the four dimension data set

The second experiment is done on the four dimension

samples with Three input variable xt−2, xt−1 and xt, through

which we predict the dependent variable xt+1. The parameters

of algorithms in this experiments are the same as that in the

first experiment. Fig. 5 (a) displays the convergence process of

k-hyperplane clustering algorithm for the four dimension data.

It can be seen that the sum of distances arrives at the stable

state of around 15, which is similar to the final convergence

state in the first experiment. However, the convergence is not

as fast as that in the first experiments. It may be because the

variable xt−1 is added as an input variable, which change

the mapping function to be with three independent variables.

However, actually when we produce the time series, we only

use two independent variables xt−2 and xt. The process goes

for 18 iterations.

From the Fig. 5(b), it can be seen that the convergence of

the trained neural network is similar with the process in the

first experiments. The initial cost for the results from k linear

functions is around 2000. Obviously, the results from the k
linear functions are worse than that in the first experiments.

However, the neural network fusing the results from k hyper-

planes can obtain approximate same performance for the two

test data sets. The mean squared error is 0.00018531, and the

maximum error is 0.0672. Fig. 6 shows that the scatter plot

of estimates against real values fits the x = y line very well.
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(a) k-hyperplane algorithm convergence
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Fig. 5. convergence for 4-dim data

V. CONCLUSIONS

In summary, we present a novel k-hyperplane based neural

network model for non-linear regression. The experiments are

done on an artificial time series, and the performance of the

model is observed for two cases, three dimension data and four
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Fig. 6. Scattering the estimates against the real values for 4-dim data

dimension data, respectively. It is shown that the dimension

of inputs affect the clustering performance very much. Neural

network fusion can get some compensation in performance.

The prediction performance is very good for the artificial time

series. The further work will concern with the dynamic size

of clusters, and adjustment of neural network parameters and

structures. We will further exploit our approach for prediction

problems in finance, market or environment areas.
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