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ABSTRACT

Compressive sensing(CS) has inspired significant interest be-
cause of its compressive capability and lack of complexity on
the sensor side. In this paper, we present a study of three
sampling patterns and investigate their performance on CS
reconstruction. We then propose a new image fusion al-
gorithm in the compressive domain by using an improved
sampling pattern. There are few studies regarding the ap-
plicability of CS to image fusion. The main purpose of this
work is to explore the properties of compressive measure-
ments through different sampling patterns and their poten-
tial use in image fusion. The study demonstrates that CS-
based image fusion has a number of perceived advantages in
comparison with image fusion in the multiresolution (MR)
domain. The simulations show that the proposed CS-based
image fusion algorithm provides promising results.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—sensor fusion; G.1.6 [Numerical Analysis]: Op-
timization—linear programming

General Terms
Algorithms,Experimentation,Performance

Keywords
compressive sensing, CS-based image fusion, multiresolution
image fusion
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Results of Candès et al. [6] and Donoho [9] demonstrated
that sparse or compressible signals can be accurately re-
constructed from a small set of incoherent projections, in
what is now known as compressive sensing or compressive
sampling. Usually, the number of samples required for re-
constructing the original signal can be far fewer than the
number of samples if the signal is sampled at the Nyquist
rate, thus providing the benefits of reduced storage space
and transmission bandwidth due to the phenomenal com-
pression achieved. For this reason CS has been proposed as
a viable candidate in many practical applications, such as
data compression [3, 7], wireless communication [18], sen-
sor networks [4], compressive imaging [8, 10], etc. However,
there is little literature on CS concerning its application to
image fusion. Image fusion is the combination of multiple
images into a single fused image that aids human visual per-
ception or subsequent image processing tasks. One method
of achieving image fusion is with a multiresolution decompo-
sition scheme [15, 25]. All these methods require knowledge
of the original images. A natural question emerges about
the possibility of fusing images without acquiring the orig-
inal input images. One key advantage offered by the CS
approach is that samples can be collected without assum-
ing any prior information about the signal being observed,
thereby motivating our research on compressive image fu-
sion.

In this paper, we first analyze the impact of different sam-
pling patterns on the compressive sensing reconstruction.
For this purpose, three patterns are employed to sample the
image in the Fourier domain similar to [5]. The image is
then recovered via a total variation optimization presented
in [6]. The performance of the sampling patterns is tested
on various types of images, especially, on multimodal im-
ages, which are used in the proposed CS-based image fu-
sion algorithm. Finally, an image fusion algorithm is pre-
sented in the compressive domain using different sampling
patterns. The experiments show that our proposed double-
star-shaped pattern achieves better reconstruction results
as well as fusion results. Due to its universality and sim-
plicity on the hardware side [10], compressive sensing is an
attractive scheme for image fusion. CS-based image fusion
possesses a number of advantages over conventional image
fusion in the multiresolution domain. These are discussed
in Section 4.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief description on CS and introduces new



sampling patterns with their performance on the compres-
sive sensing reconstruction. In Section 3, a new CS-based
image fusion algorithm is developed in comparison with a
conventional image fusion technique in the multiresolution
domain. Simulation results and discussions are presented in
Section 4. Finally, conclusions and suggestions for future
work are given in Section 5.

2. SAMPLING PATTERNS IN COMPRES-
SIVE SENSING

Compressive sensing enables a sparse or compressible sig-
nal to be reconstructed from a small number of non-adaptive
linear projections, thus significantly reducing the sampling
and computation costs. CS has many promising applications
in signal acquisition, compression and medical imaging [17,
19]. In this work, we investigate its potential application
in the image fusion. We first provide a brief introduction
to compressive sensing and explore the impact of different
sampling patterns on the CS reconstruction.

2.1 Background on Compressive Sensing

Consider a real-valued, finite-length, one-dimensional sig-
nal1 x ∈ RN with elements x[n], n = 1, 2, ..., N . We say that
the signal is K-sparse if it can be represented as:

x = Ψθ (1)

where Ψ is some basis and θ is a vector containing only
K ¿ N nonzero coefficients. θ can be thought of as x in
domain Ψ. In CS, we do not measure or encode θ directly,
rather, we take the compressive measurements:

y = Φx (2)

where y ∈ RM and Φ is an M ×N matrix representing the
measurement process. Although M < N makes the recovery
of the signal x from the measurements y ill-posed in general,
recent CS experiments show that the recovery is possible and
practical by adding assumption of signal sparsity [20].

2.2 Sampling Patterns in CS Measurement

From Section 2.1, it is known that compressive measure-
ments y are obtained from a non-adaptive linear projection
of the signal onto a random measurement basis matrix Φ.
There are different ensembles of CS matrices defined in pre-
vious CS literature. For example, in [9], Donoho considered
a uniform spherical ensemble, and Candès et al. used ran-
dom partial Fourier matrices and showed several interesting
properties of this ensemble in CS [6]. Due to the special
structure of the Fourier transform underlying the partial
Fourier ensemble, the use of such matrices greatly expands
the applicability of the CS scheme into large scale data, e.g.
2-D images [20]. For example, a toolbox called l1-magic [5]
used 2-D fast Fourier transform and the CS matrix Φ was
constructed by a star-shaped sampling pattern in the 2-D
Fourier plane, as shown in Fig. 1(a). The sampling pat-
tern consists of white lines indicating the locations of the
frequencies used to compute compressive measurements y.

1An image can be vectorised into a long one-dimensional
vector.

(a) (b)

(c)

Figure 1: Sampling patterns. (a) Star shape. (b)
Double-star shape. (c) Star-circle shape.

Once y have been measured, a reconstruction algorithm is
employed to recover original signal x from the measurements
y. Therefore, the choice of different sampling patterns will
lead to different measurements. There are two issues which
need to be addressed: how the sampling patterns affect the
reconstruction process, and whether a sampling pattern with
superior performance to the star-shaped one can be found.

To investigate these problems, we design two new sam-
pling patterns according to the properties of the 2-D Fourier
transform by ensuring that the number of compressive sam-
ples remains the same as for the star-shaped one. As we
know, the low frequencies are centered at the origin of the
frequency coordinate system and the high frequencies are
away from the center. Images usually have lots of low fre-
quency information, so the lines are chosen with higher den-
sity sampling at low frequency, like two stars centered at
the same origin. We name the pattern “double-star”, shown
in Fig. 1(b). Inspired by the Gabor filter which divides
the spectrum into slices, we design a pattern with a simi-
lar structure which also has higher density sampling at low
frequency. The pattern is called “star-circle” shown in Fig.
1(c). By changing the density of lines in the sampling pat-
terns, we can obtain different numbers of measurements.

All three patterns illustrated in Fig. 1 are tested on var-
ious types of images, including 40 natural images [2], 35
infrared (IR) and 35 visible images captured by the digital
cameras. [1]. These surveillance images are also used in the
following image fusion experiments. Fig. 2 presents the peak
signal- to-noise ratio of the recovered images for these three
sampling patterns. The M/N on the x-axis is the rate of the
CS measurements over the original signal. The figure shows
that better quality images can be obtained by simply taking
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Figure 2: Log values of PSNR for reconstructions
of a variety of images. (a) Natural images. (b) IR
images. (c) Visible images.

more measurements because the CS measurement process
is progressive. In these three cases, the double-star-shaped
pattern yields the best performance for all the three types
of images in terms of the PSNR values. We also notice that
the reconstruction process demands less computation time
by using the double-star-shaped pattern. This is because
this sampling pattern makes a good balance of choosing the
low frequencies and high frequencies in the Fourier domain.

(a) (b)

(c) (d)
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Figure 3: Histograms of grayscale distributions for
three images. (a) A natural image. (b) Histogram
for the natural image (the standard deviation is σ =
62.66). (c) An IR image. (d) Histogram for the IR
image (the standard deviation is σ = 26.57). (e) A
visible image. (f) Histogram for the visible image
(the standard deviation is σ = 17.85). The grayscale
values are measured on a 0− 255 scale.

Moreover, visible and IR images’ curves appear to be flat
as a high proportion of the measurements are used for the
reconstruction. This is because that the PSNR value is not
available when the reconstruction algorithm generates a per-
fectly restored image that is identical to the original input
image. In this case, we assume that the reconstructed im-
age has 100 dB of PSNR (i.e. log(100) = 4.61) since the
image estimated can hardly be distinguished from the orig-
inal at a PSNR of about 60 dB [11]. However, the average
experimental results show that natural images do not lead
to a perfect reconstruction even by entailing more measure-
ments. Additionally, there is a notable difference between
natural images and visual and IR images in that the latter
two types of images achieve a better PSNR with the same
or fewer CS measurements. This can be explained using
Fig. 3 which is an example showing the typical plotted his-
tograms corresponding to these three types of images. The



standard deviation is used here to measure the dispersion
of the grayscale image data. The real signals of the natural
image tend to be less sparse than the visible and IR images.
We know that signal sparsity is one of the important as-
sumptions adopted in the CS reconstruction. Thus, natural
images require more CS measurements to achieve a desirable
threshold of PSNR (i.e. 60 dB or log(60) = 4.09) or fail to
reach this value for some particular images. It is sensible to
apply compressive sensing techniques to multisensor images.

3. COMPRESSIVE IMAGE FUSION

There is, to our knowledge, little research regarding the
applicability of CS to image fusion in literature. The center
piece of this work is to develop a new image fusion algorithm
making good use of compressive sensing technique. We start
with classic image fusion methods using multiresolution de-
compositions.

3.1 Image Fusion in the Multiresolution Do-
main

Multiresolution decompositions (e.g. pyramid, wavelet,
linear, etc.) have shown significant advantages in the repre-
sentation of signals. They capture the signal in a hierarchical
manner where each level corresponds to a reduced-resolution
approximation. MR methods in image fusion are very im-
portant for various reasons. First, MR representations en-
able one to consider and fuse image features separately at
different scales. They also produce large coefficients near
edges, thus revealing salient information [13]. Moreover, MR
methods offer computational advantages and appear to be
robust. In past decades, wavelets have emerged as an effec-
tive tool for this problem due to their energy compaction
property [15, 22, 24]. In this paper, we address the image
fusion problem in the context of wavelet transforms. As our
main focus is not on MR image fusion, we choose a simple
maximum selection (MS) fusion scheme to fuse the input
images at the pixel level. MS is a widely used fusion rule
which considers the maximum absolute values of the wavelet
coefficients from the source images as the fused coefficients.

The wavelet-based image fusion algorithm consists of two
main components. First, the detailed wavelet coefficients
are composed using the MS fusion rule:

DF = DM with M = arg max
i=1,...,I

(|Di|) (3)

where DF are the composite coefficients, DM is the maxi-
mum absolute value of the input wavelet coefficients, and I
is the total number of the source images.

Because of their different physical meaning, the approxi-
mation and detail images are usually treated by the combi-
nation algorithm in different ways. Then a popular way to
construct the fused approximation image AF is:

AF =
1

I

I∑
i=1

(Ai) (4)

The fused image is obtained by taking an inverse wavelet
transform. As we can see, an image fusion approach based
on wavelets requires to manipulate detailed coefficients and

Table 1: Compressive image fusion algorithm.
Algorithm: Compressive image fusion
1. Take the compressive measurements Yi, i = 1, ..., I
for the ith input image using the double-star-shaped
sampling pattern.
2. Calculate the fused measurements using the formula:
YF = YM with M = arg maxi=1,...,I(|Yi|).
3. Reconstruct the fused image from the composite
measurements YF via the total variation optimization
method [6].

approximation images, while in the compressive domain, it
only considers the compressive measurements.

3.2 Image Fusion in the Compressive Domain

In this section, we formulate an image fusion algorithm
that uses compressive measurements to fuse multiple images
into a single representation. Recent theoretical results show
if the signal is sparse or nearly sparse in some basis, then
with high probability, the measurements essentially encode
the salient information in the signal. Further, the unknown
signal can be estimated from these compressive measure-
ments to within a controllable mean-squared error [6, 9]. In
this sense, we can apply a similar fusion schemes to that used
in the wavelet domain in the compressive domain, so the dif-
ference is that image fusion is performed on the compressive
measurements rather than on the wavelet coefficients. The
basic steps are described in Table 1.

There is a significant number of CS literature focusing on
problems in signal reconstruction and image approximation.
For instance, one technique employs a specialized interior-
point method for solving CS reconstruction in which a pre-
conditioned conjugate gradient method is used to compute
the search step [12]. These methods generally rely on nonlin-
ear recovery algorithms based on convex optimization and
signals can be recovered from what appears to be highly
incomplete data. Among them, l1-magic [5] based on the
methodology proposed in [6] achieves robust and reliable
reconstructed results, particularly for signals that are not
strictly sparse. Our CS-based fusion algorithm adopts this
reconstruction method to restore the resultant fused images.
One drawback of this method is the high computational cost.

4. SIMULATION RESULTS AND DISCUS-
SIONS

Objective evaluation criteria are applied to compare fusion
results obtained using different sampling patterns. Since
ground-truth data are not available here, Piella’s [16] and
Petrovic’s [14] metrics are used to measure the relative amount
of salient information conveyed in the fused image. Three
pairs of images shown in Fig. 4 are used in the experiments.
In Fig. 5 and Fig. 6, we present some results of the pro-
posed image fusion algorithm applied to these text images
using Piella’s and Petrovic’s metrics, respectively. There is
a clear performance improvement by using the double-star-
shaped sampling pattern over the other two patterns when
fewer measurements are used. However, all three patterns
yield similar results as numbers of the compressive measure-
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Figure 4: Experimental images. (a) 256×256“Kayak”
visible image. (b) 256 × 256 “Kayak” IR image. (c)
256 × 256 “UN Camp” visible image. (d) 256 × 256
“UN Camp” IR image. (e) 256× 256 MRI image. (f)
256× 256 CT image.

ments increase. The shape of the plotted polylines demon-
strates that the two metrics generally offer correlated fusion
assessment results. We notice that by using nearly 50%
fewer compressive measurements than reconstructed pixels,
we can achieve almost the same fusion results as using the
entire set of pixels. Fig. 7(a)-(e) illustrate the fusion results
using 10%, 25%, 50%, 75%, and all Fourier coefficients as
the compressive measurements. The original input images
are presented in Fig. 4(a) and 4(b). It indicates that there
is no perceivable difference between the fused images using
the measurements over 50% of Fourier coefficients.

Furthermore, compared with the fused image shown in
Fig. 7(f) that is obtained by using a MS scheme in a com-
plex wavelet domain, our proposed fusion algorithm does
not provide a comparable results in terms of human per-
ception. The poor image quality is mainly due to the fact
that Fourier coefficients have their own limitations as com-
pressive measurements to be used in image fusion. This has

(a)

(b)

(c)

Figure 5: Piella’s metric results using different sam-
pling patterns for different images. (a) “Kayak” im-
ages. (b) “UN Camp” images. (c) Medical images.

been proven by observing Fig. 7(e). The reconstruction al-
gorithm should also be accounted for in this case since the
method was originally applied to one single image rather
than multiple images.

Although the obtained fusion results are not perfect, CS-
based image fusion has a number of advantages over conven-
tional image fusion algorithms. It offers computational and
storage savings by using a compressive sensing technique.
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Figure 6: Petrovic’s metric results using different
sampling patterns for different images. (a) “Kayak”
images. (b) “UN Camp” images. (c) Medical im-
ages.

Compressive measurements are progressive in the sense that
larger numbers of measurements will lead to higher quality
reconstructed images. Image fusion can be performed with-
out acquiring the observed signals. Additionally, the re-
cently proposed compressive imaging system [10, 21], which
relies on a single photon detector, enables imaging at new
wavelengths unaccessible or prohibitively expensive using
current focal plane imaging arrays. The development of this

(a) (b)

(c) (d)

(e) (f)

Figure 7: Fusion results (The double-star-shaped
sampling pattern is used here in the compressive
image fusion algorithm). (a) Fused image recovered
from M = 6554 compressive measurements (M/N =
0.10). (b) Fused image recovered from M = 16384
compressive measurements (M/N = 0.25). (c) Fused
image recovered from M = 32768 compressive mea-
surements (M/N = 0.50). (d) Fused image recov-
ered from M = 49152 compressive measurements
(M/N = 0.75). (e) Fused image using all Fourier co-
efficients (N = 65536). (f) Fused image using a MS
scheme in the wavelet domain.

new imaging system has motivated investigation into CS-
based image fusion techniques for practical use. This will
significantly reduce the hardware cost, meanwhile expand
image fusion in modern military and civilian imaging appli-
cations in a cheaper and more efficient way. However, the
compressive measurements lose spatial information due to
the CS measurement process. Therefore, traditional image
fusion rules operating on local knowledge cannot be applied
to compressive image fusion.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new image fusion algo-



rithm in the compressive domain, in which three sampling
patterns were investigated for reconstruction from compres-
sive samples. To the best of our knowledge, no literature
has so far been focused on CS-based image fusion. One
key advantage offered by this newly introduced technique is
that samples can be collected without assuming any prior
information about the signal being observed. Therefore,
compressive image fusion provides a truly different way of
fusing images compared with traditional fusion methods at
pixel or feature level. Apart from computational and storage
savings by using compressive sensing techniques, CS-based
image fusion has a number of advantages over conventional
image fusion algorithms. Most importantly, the recently de-
veloped compressive imaging system makes it promising to
expand compressive image fusion in modern military and
civilian imaging applications.

As we previously stated, the main weakness of compressive
image fusion is that spatial information is lost due to com-
pressive sensing measurement process. Consequently, con-
ventional window-based fusion schemes cannot be applied
to a CS-based fusion algorithm. By examining the underly-
ing structure of the compressive measurements, a new fusion
strategy could be derived in future work.
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