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a b s t r a c t

Linguistic decision tree (LDT) is a tree-structured model based on a framework for “Modelling with
Words”. In previous research [15,17], an algorithm for learning LDTs was proposed and its performance on
some benchmark classification problems were investigated and compared with a number of well known
classifiers. In this paper, a methodology for extending LDTs to prediction problems is proposed and the
performance of LDTs are compared with other state-of-art prediction algorithms such as a Support Vector
Regression (SVR) system and Fuzzy Semi-Naive Bayes [13] on a variety of data sets. Finally, a method for
linguistic query evaluation is discussed and supported with an example.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Fuzzy Logic was first proposed by Zadeh [28] as an extension
of traditional binary logic. In contrast to a classical set, which has a
crisp boundary, the boundary of a fuzzy set is blurred and the transi-
tion is characterized by membership functions. Almost all the labels
we give to characterize a group of objects are fuzzy. Given a fuzzy
set, an object may belong to this set with a certain membership
value. If we consider this methodology in an opposite way: given
an object, fuzzy labels (sets) can be used to describe this object with
some appropriateness measures. Follow this idea, we discuss a new
approach based on random set theory to interpret imprecise con-
cepts. This framework, first proposed by Lawry [13] and is referred
to as Label Semantics, can be regarded as an approach to Modelling
with Words [12].

Modeling with Words is a new research area which emphasis
“modelling” rather than “computing”. For example, Zadeh’s theo-
ries on Perception-based Computing [30] and Precisiated Natural
Language [31] are the approaches of “computing”. However, the
relation between it and Computing with Words [29] is close is
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likely to become even closer. Both of the research areas are aimed
at enlarging the role of natural languages in scientific theories,
especially, in knowledge management, decision and control. In this
paper, the framework we use is mainly for modelling and building
intelligent machine learning and data mining systems. Therefore,
the research presented here is considered as a framework for Mod-
elling with Words.

As one of the most successful branches of Artificial Intelligence,
machine learning and data mining research has developed rapidly
in recent decades. However, most machine learning algorithms
specialise on classification problems. For example, in the popular
UCI repository [2] for machine learning and data mining research,
most datasets concern classification. However, in many real-world
applications, data ranging from financial analysis to weather fore-
casting are for prediction. A prediction model can be easily used
as a classifier by setting a decision threshold. Usually, a good pre-
diction model can be a good classifier as well. However, not all
the classifier can be used for prediction. Tree induction algorithms
were received a great deal of attention because of their simplic-
ity and effectiveness. From early discrete decision trees such as
ID3 [18] and C4.5 [19] to a variety types of fuzzy decision trees
[8,14,23–26], most tree induction models are designed for clas-
sification but not for prediction. Although there is some research
on regression trees. For example, Breiman et al.’s CART algorithm
[3]. Here we present a tree induction model based on a high-level
knowledge representation framework which is referred to as Label
Semantics [10]. Label semantics is a random set semantics for mod-
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elling imprecise concepts where the degree of appropriateness of
a linguistic expression as a description of a value is measured in
terms of how the set of appropriate labels for that value varies
across a population. Based on label semantics, linguistic decision
tree (LDT) [15] was proposed where linguistic expressions such as
small, medium and large are used to build a tree guided by informa-
tion based heuristics. For each branch, instead of labeling it with a
certain class (such as positive or negative) the probability of mem-
bers of this branch belonging to a particular class is evaluated from
a given training dataset. Unlabeled data is then classified by using
probability estimation of classes across the whole decision tree.

Compared to other tree learning algorithms, the LDT model
has following advantages: (1) the LDT model has very good trans-
parency: A LDT can be interpreted as a set of linguistic rules based
on label semantics. By applying a forward merging algorithm (see
Section 3.5), we can generate much more compact trees without
a significant loss of accuracy. (2) The performance of LDT model
is comparable to other classifiers such as Naive Bayes and Neural
Networks [17]. (3) The linguistic structure of the LDT model allows
linguistic queries and information fusion (see Section 5). In this
paper, the LDT classification model is extended to prediction and
empirical results on several benchmark problems are presented.
These problems rangers from function regression, time series pre-
diction to real-world applications such as flood forecasting.

This paper is organized as follows: Section 2 gives a short intro-
duction on label semantics and the corresponding methodology
for analyzing data. In Section 3, the LDT model for classification is
outlined and it is described how this can be extended from classi-
fication problems to prediction problems. Experimental results for
the benchmark problems are given and compared with other pre-
diction models in Section 4. In the last section the methodology for
linguistic query evaluation algorithms are introduced based on a
formal linguistic reasoning framework.

2. Random set semantics for Modelling with Words

Label Semantics, proposed by Lawry [10], is a random set based
framework for modelling with linguistic expressions based on
labels such as small, large, short, tall, young, old and so on. Such
labels are defined by overlapping fuzzy sets which are used to
cover the universe of continuous variables. The fundamental ques-
tion posed by label semantics is how to use linguistic expressions
to label numerical values. The basic idea is that when individuals
make assertions, such as ‘John is tall’, they are essentially provid-
ing the information that the label tall is appropriate for describing
John’s height.

2.1. Label Semantics

For a variable x into a domain of discourse denoted by ˝ we
identify a finite set of linguistic labels LA = {L1, . . ., Ln} with which
to label the values of x. Then, for a specific value x ∈ ˝, an individual
I identifies a subset of LA, denoted DI

x to stand for the description of
x given by I, as the set of labels with which it is appropriate to label
x. If we allow I to vary across a population V with prior distribution
PV, then DI

x will also vary and generate a random set denoted Dx into
the power set of LA. By evaluating the probability of occurrence of
a particular set of labels say S, for Dx across the population then we
obtain a distribution on Dx referred to as a mass assignment and
denoted by mx (see [1] for details on the Mass Assignment theory).
We can view the random set Dx as a description of the variable x in
terms of the labels in LA. More formally,

Definition 1 (Label description). For x ∈ ˝ the label description of
x is a random set from V into the power set of LA, denoted Dx, with

associated distribution mx, given by

∀S ⊆ LA, mx(S) = PV ({I ∈ V |DI
x = S})

where mx(S) is the mass associated with a set of labels S and∑
S⊆LA

mx(S) = 1

Intuitively mx(S) quantifies the evidence that S is the set of
appropriate labels for x. For example, given a set of labels defined on
a man’s age LAage = {young, middle-aged, old}. For a particular group
of voters V and |V | = 10, 3 of them agree that young is the only suit-
able label for the age of 30 and 7 may agree that both young and
middle-aged are suitable labels. In this case, according to Definition
1, m30(young) = 0.3 and m30(young, middle-aged) = 0.7 so that the
mass assignment for 30 is

m30 = {young}: 0.3, {young, middle-aged} : 0.7

where 0.3 is the associated mass for {young} and 0.7 is the associ-
ated mass for {young, middle-aged}.

Within this framework, appropriateness degrees are used to eval-
uate how appropriate a label is for describing a particular value of
x. Given a particular value x, the appropriateness degree of L as
a label for x where L is represented by fuzzy set F, is the mem-
bership value of x belonging to F. The reason we use the new
term ‘appropriateness degree’ is partly because it more accurately
reflects the underlying semantics and partly to highlight the quite
distinct calculus based on this framework. It is assumed that the
appropriateness of L to x, �L(x) is the total evidence that L is an
appropriate label for x which motivates the following definition.

Definition 2 (Appropriateness degrees).

∀x ∈ ˝, ∀L ∈ LA �L(x) =
∑

S⊆LA:L ∈ S

mx(S)

Consider the above example, the appropriate degrees for
using young to label 30 is �young(30) = 0.3 + 0.7 = 1. And similarly,
�middle-aged(30) = 0.7. In many real-world applications, only impre-
cise values can be realistically obtained due to limitations of
measurement on accuracy. In the label semantics framework, val-
ues are represented by a higher level language, i.e. linguistic labels.
By taking advantages of the high level representation language
for its robustness and ability of coping with uncertainties, a new
paradigm for data analysis and data mining is proposed.

2.2. Label Semantics for data analysis

We now make the additional assumption that value descrip-
tions are consonant random label sets [10] which simply means
that individuals in V differ regarding what labels are appropriate
for a value. The consonance restriction could be justified by the
idea that all individuals share a common ordering on the appro-
priateness of labels for a value and that the composition of DI

x is
consistent with this ordering for each I. For the purposes of data
analysis, a consonance assumption is needed.

Definition 3 (Consonant mass assignment on labels). Let {ˇ1, . . .,
ˇk}= {�L(x) | L ∈ LA, �L(x) > 0} ordered such that ˇt > ˇt+1 for t = 1, 2,
. . ., k − 1 then:

mx = Mt : ˇt − ˇt−1, for t = 1, 2, . . . , k − 1,

Mk : ˇk, M0 : 1 − ˇ1

where M0 =∅ and Mt = {L ∈ LA | �L(x) ≥ ˇt} for t = 1, 2 . . . , k.
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Fig. 1. An example of a full fuzzy partitioning with 3 uniformly distributed trapezoidal fuzzy sets with 50% overlap.

Definition 3 provides us with a way of calculating the mass
assignment mx from the given appropriateness degrees (see the fol-
lowing example). Because the appropriateness degrees are sorted
under the consonance assumption the resulting mass assignments
are ‘nested’. Clearly, there is a unique consonant mapping to mass
assignments for a given set of appropriateness degree values. We
also make a full fuzzy partitioning assumption to avoid mass being
allocated to the empty set. More practical to disallow this possibility
as follows:

Definition 4 (Full fuzzy partitioning). Given a continuous discourse
˝, it is called a full fuzzy partitioning of ˝ by LA if:

∀x ∈ ˝, ∃L ∈ LA, �L(x) = 1

The full fuzzy partitioning assumes that, for any data element,
there always exists a particular label which all the voters agree it
is appropriate, though the voters may have different opinions on
other labels. Fig. 1 shows a schematic illustration of a full fuzzy
partitioning with 3 trapezoidal fuzzy sets. Unless otherwise stated,
in this paper we will use NF fuzzy sets with 50% overlap to cover
a continuous universe. This guarantees that only two fuzzy sets
overlap, so that the appropriateness degrees satisfy: ∀x ∈ ˝, ∃i ∈ {1,
. . ., NF − 1} such that �Li

(x) = ˛, �Li+1
(x) = ˇ and �Lj

(x) = 0 for j < i
or j > i + 1 and where max(˛, ˇ) = 1. Under the full fuzzy partitioning
assumption, w.l.o.g. we assume ˛ = 1 then mx has the following form
according to Definition 3.

mx = {Li} : 1 − ˇ, {Li, Li+1} : ˇ, {Lj} : 0 for j /∈ {i, i + 1} (1)

It is also important to note that, given definitions for the appropri-
ateness degrees on labels, we can isolate a set of subsets of LA with
non-zero masses. These are referred to as focal sets or focal elements.

Definition 5 (Focal elements). The set of focal elements for LA is
defined by:

F = {S ⊆ LA|∃x ∈ ˝, mx(S) > 0} (2)

For example, the focal elements generated by the
fuzzy partitioning in Fig. 1 are F = {F1, . . . , F5} =
{{small}, {small, medium}, {medium}, {medium, large}, {large}}.
However, {small, large} can not occur as a focal element since these
two labels do not overlap. In other words, focal elements are the
sets of labels with non-zero associated masses in describing data.

There are a few ways of fuzzy partitioning, we usually use
uniform partitioning and percentile-based partitioning. Uniform
partitioning splits the continuous universe into several intervals of
identical length (for example, see Fig. 1). The intervals generated by
percentile-based partitioning contain approximately same num-
ber of instances. Given the assumptions we have made (consonant,
full fuzzy partitioning with 50% overlap) we can then always find

the unique and consistent translation from a given data element
to a mass assignment on focal elements, specified by the function
�L : L ∈ LA. We call this the linguistic translation (LT).

By applying linguistic translation, numerical values
are represented by sets of appropriate labels with asso-
ciated masses. For example, Fig. 1 shows a full fuzzy
covering of the universe ˝ = [0, 1] with three fuzzy
labels: small, medium and large with 50% overlap where
F = {{small}, {small, medium}, {medium}, {medium, large}, {large}}.
For the data element x1 = 0.15, the appropriate labels are small and
medium, and the appropriateness degrees (can be read from the
membership values) of these labels are:

�small(x1) = 1, �medium(x1) = 0.6

The mass assignment on the appropriate labels can be calculated
based on Eq. (1) to give:

mx1 = {small} : 0.4, {small, medium} : 0.6

Similarly, for x2 = 0.37, x3 = 0.7, we obtain

mx2 = {small, medium} : 0.5, {medium} : 0.5

mx3 = {medium, large} : 0.8, {large} : 0.2

The linguistic translation for 〈x1, x2, x3〉 can be illustrated as follows:

We may notice that the linguistic translation is related to the
membership functions we used. If we use different discretization
techniques, we may obtain different mass assignments on labels for
given numerical values. Empirical studies show that, using different
discretization methods has no significant influence on the perfor-
mance and stability of learning algorithms [15]. Hence, w.l.o.g, all
the experiments in this paper are based on the percentile-based
fuzzy partitioning method.

3. Linguistic decision trees

Linguistic decision tree, proposed by Qin and Lawry [15],
is a transparent classification model based on label seman-
tics. Consider a database with n attributes and N instances D =
{x1(i), . . . , xn(i)|i = 1, . . . , N} and each instance is labeled by one
of the classes: C = {C1, . . . , C|C|}. A linguistic decision tree is con-
sisted by a set of branches with associated class probabilities in the
following form:
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LDT = {〈B1, P(C1|B1), . . . , P(C|C||B1)〉, . . . , 〈Bs, P(C1|Bs), . . . ,

P(C|C|)|Bs)〉}
P(Cj|Bv) is the probability of belonging to class Cj when given branch
Bv for v = 1, . . . , s. A branch B with k nodes is defined as:

B = 〈F1, . . . , Fk〉
where k ≤ n and Fj ∈Fj . Fj is the set of focal elements for attribute j
(see Definition 5).

Within a LDT, each branch has an associated probability distri-
bution on the classes. For example the branch 〈〈{large3}, {small2,
large2}〉, 0.6, 0.3, 0.1〉 means the probability distribution on classes
C1, C2 and C3 is 0.6 : 0.3 : 0.1 when given attribute 3 that can be only
described as large and attribute 2 can be described as small and large
(attribute 1 does not appear in this branch). We need to be aware
that the linguistic expressions such as small, medium or large for
each attribute are not necessarily the same, since they are defined
independently on each attribute.

3.1. Linguistic decision trees for classification

According to the definition of LDT, if given a branch of a LDT in
the form of B = 〈F1, . . ., Fk〉. The probability of class Cj (j = 1, . . . , |C|)
given B can then be evaluated from a given training setD as follows.
First, we consider the probability of a branch B given a particular
example x ∈D, where x = 〈x1, . . ., xn〉 ∈ ˝1 × · · · × ˝n.

P(B|x) =
k∏

r=1

mxr (Fr) (3)

mxr (Fr) are the associated masses of data element xr for r = 1, . . ., k.
The probability of class Cj given B can then be evaluated by:

P(Cj|B) =

∑
i ∈Dj

P(B|xi)∑
i ∈D

P(B|xi)
(4)

whereDj is the subset consisting of instances which belong to class
j. In the case of

∑
i ∈D P(B|xi) = 0, which can occur when the training

database for the LDT is small, then there is no non-zero linguistic
data covered by the branch. In this case, we obtain no information
from the database so that equal probabilities are assigned to each
class.

P(Cj|B) = 1
|C| for j = 1, . . . , |C| (5)

Now consider classifying an unlabeled instance in the form of
x = 〈x1, . . ., xn〉 which may not be contained in the training data set
D. First we apply linguistic translation to x based on the fuzzy cov-
ering of the training dataD. In the case that a data element appears
beyond the range of training data set [Rmin, Rmax] for a particular
attribute, we assign the appropriateness degrees of Rmin or Rmax to
the element depending on which side of the range it appears. Then,
according to the Jeffrey’s rule [9] the probability of class Cj given a
LDT with s branches are evaluated as follows:

P(Cj|x) =
s∑

v=1

P(Cj|Bv)P(Bv|x) (6)

where P(Cj|Bv) and P(Bv|x) are evaluated based on Eqs. (3) and (4) (or
(5)), respectively. In classical decision trees, classification is made
according to the class label of the branch in which the data falls. In
our approach, the data for classification partially satisfies the con-
straints represented by a number of branches and the probability

estimates across the whole decision tree are then used to obtain an
overall classification. More details can be found in [15].

3.2. Linguistic decision tree for prediction

Consider a database for prediction D =
{
〈

x1(i), . . . , xn(i), xt(i)
〉

|i = 1, . . . , N} where x1, . . ., xn are
potential explanatory attributes and xt is the continuous target
attribute. Unless otherwise stated, we use trapezoidal fuzzy sets
with 50% overlap to discretized each continuous attribute (xt as
well) universe and assume the set of focal elements areF1, . . . , Fn

and Ft . For the target attribute xt: Ft = {F1
t , . . . , F |Ft |

t }, we can
consider each focal element of target attributes as class labels.
Hence, the LDT model for prediction has the following form:

LDT = {〈B1, P(F1
t |B1), . . . , P(F |Ft |

t |B1)〉, . . . , 〈Bs, P(F1
t |Bs), . . . ,

P(F |Ft |
t )|Bs〉}

Intuitively we may like to view the target focal elements as impre-
cise class labels. The essential difference is that, these “classes”
overlap each other and this must be taken into account when eval-
uating branch probabilities. At the training stage, for a particular
instance xi ∈ ˝1 × · · · × ˝n, where xi → xt(i) (i.e., xt(i) is predicted
value for the instance xi) for i = 1, . . ., N, there may be several cor-
responding target focal elements rather than just one. The degree
to which xi belonging to a particular target focal element Fj

t is mea-

sured by �j
i

as follows:

�j
i
= mxt (i)(F

j
t ) (7)

where j = 1, . . . , |Ft |. From Eq. (7), we can see that �j
i

is just the

associated mass of Fj
t given xt(i). Hence, we can write the corre-

sponding target focal elements with a membership for xi are as
follows:

xi → 〈F1
t : �1

i , . . . , F |Ft |
t : �|Ft |

i 〉 (8)

However, since we have made an assumption of 50% overlapping
on fuzzy sets, so, at most two of the values {�1, . . . , �|Ft |} are non-
zero. We can also view � as an indicator: if and only if �j

i
> 0, Fj

t is
one of the corresponding target focal elements for the data element
xi, otherwise, it is not. Based on Eq. 4, the probability of Fj

t given B
is evaluated as follows:

P(Fj
t |B) =

∑
i ∈D

�j
i
P(B|xi)∑

i ∈D
P(B|xi)

(9)

where Fj
t ∈Ft . Eq. (9) is a general version of Eq. (4). In classification

problems, the target labels are discreet, thus � is either 0 or 1. So
that∑
i ∈Dj

P(B|xi) =
∑
i ∈D

�j
i
P(B|xi)

in classification problems. Example 1 shows how to calculate these
probabilities. Similarly in case of

∑
i ∈DP(B|xi) = 0, we use the fol-

lowing equation:

P(Fj
t |B) = 1

|Ft | for j = 1, . . . , |Ft | (10)
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Based on Eq. 6, we can obtain the probabilities of target focal ele-
ments given a data element x ∈ ˝ × · · · × ˝n based on a LDT with s
consisting branches according to the Jeffrey’s rule [9]:

P(Fj
t |x) =

s∑
v=1

P(Fj
t |Bv)P(Bv|x) (11)

Example 1. Consider a problem with 2 potential explana-
tory attributes x1, x2 and one target attribute xt, where
LA1 = {small1(s1), large1(l1)}, LA2 = {small2 (s2), large2(l2)} and
LAt = {smallt (st), larget(lt)}. We assume the focal elements defined
on the attributes areF1 = {{s1}, {s1, l1}, {l1}},F2 = {{s2}, {s2, l2}, {l2}}
andFt = {{st}, {st, lt}, {lt}}. The training database obtained by apply-
ing linguistic translation is shown in Table 1. If we are given a branch
of the form:

B = 〈〈{s1}, {s2}〉, P({st}|B), P({st, lt}|B), P({lt |B})〉

The probabilities of target focal elements are evaluated according
to Eqs. (3), (7), (9) and (10) as follows:

P({st }|B) =

5∑
i=1

mxt (i)({st })
∏
r=1,2

mxr (i)(Fr )

5∑
i=1

∏
r=1,2

mxr (i)(Fr )

=

∑
i=1,4,5

mx1(i)({s1}) × mx2(i)({s2}) × mxt (i)({st })

5∑
i=1

mx1(i)({s1}) × mx2(i)({s2})

= 0.4 × 0 × 0.9 + 0.3 × 1 × 0.7 + 0 × 0.3 × 1
0.4 × 0 + 0.2 × 0.5 + 0 × 1 + 0.3 × 1 + 0 × 0.3

= 0.525

P({st , lt }, B) =

5∑
i=1

mxt ({st , lt })
∏
r=1,2

mxr (i)(Fr )

5∑
i=1

∏
r=1,2

mxr (i)(Fr )

=

∑
i=1,2,3,4

mx1(i)({s1}) × mx2(i)({s2}) × mxt (i)({st , lt })

5∑
i=1

mx1(i)({s1}) × mx2(i)({s2})

= 0.4 × 0 × 0.1 + 0.2 × 0.5 × 0.8 + 0 × 1 × 1 + 0.3 × 1 × 0.3
0.4 × 0 + 0.2 × 0.5 + 0 × 1 + 0.3 × 1 + 0 × 0.3

= 0.425

P({lt }, B) =

5∑
i=1

mxt ({lt })
∏
r=1,2

mxr (i)(Fr )

5∑
i=1

∏
r=1,2

mxr (i)(Fr )

=

∑
i=2

mx1(i)({s1}) × mx2(i)({s2}) × mxt (i)({lt })

5∑
i=1

mx1(i)({s1}) × mx2(i)({s2})

= 0.2 × 0.5 × 0.2
0.4 × 0 + 0.2 × 0.5 + 0 × 1 + 0.3 × 1 + 0 × 0.3

= 0.05

3.3. Defuzzification

As discussed in the last section, for a given value x = 〈x1, . . ., xn〉
to predict its target value x̂t (i.e. xi → x̂t). We can first a series of

Fig. 2. Illustration of calculating the expected value for focal elements.

probabilities on target focal elements: P(F1
t |x), . . . , P(F |Ft |

t |x). We
then take the estimate of xt, denoted x̂t , to be the expected value:

x̂t =
∫

˝t

xt p(xt |x) dxt (12)

where

p(xt |x) =
|Ft |∑
j=1

p(xt |Fj
t ) P(Fj

t |x) (13)

and

p(xt |Fj
t ) = mxt (F

j
t )∫

˝t
mxt (F

j
t ) dxt

(14)

so that, we can obtain:

x̂t =
∑

j

P(Fj
t |x) E(xt |Fj

t ) (15)

where

E(xt |Fj
t ) =

∫
˝t

xt p(xt |Fj
t ) dxt =

∫
˝t

xt mxt (F
j
t ) dxt∫

˝t
mxt (F

j
t ) dxt

(16)

In practice the calculation of Eq. (16) can be illustrated by the fol-
lowing example.

Example 2. Suppose that the output space xt is partitioned with a
set of class labels LAt = {small(s), medium(med), large(l)}. From this
we can obtain mass assignment values across the focal sets of LAt.
For example, suppose the mx({med}) is defined by

f (x) =
{

ax + b X1 ≤ x < X2
cx + d X2 ≤ x < X3

(17)

The expected value for the focal element {med} is evaluated as
follows:

E(xt |{med}) = f (x)
A

(18)

where A is the area which covered by f(x) which is represented
by the dark triangle. The area of the triangle can be obtained by
multiplying the base and one-half the height. Here the height is 1
so that A = (X3 − X1)/2. f(x) is the function of mx({med}) (see Fig. 2):

f (x) =
∫ X2

X1

x(ax + b) +
∫ X3

X2

x(cx + d)

=
[

ax3

3
+ bx2

2

]X2

X1

+
[

cx3

3
+ dx2

2

]X3

X2

= X2
3
( a

3
− c

3

)
+ X2

2

(
b

2
− d

2

)
− X1

3 a

3
− X1

2 b

2
+ X3

3 c

3
+ X3

2 d

2
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Table 1
A small-scale training linguistic database for prediction, where the values are the associated masses for the corresponding focal elements on 5 given data elements.

# Attribute 1 (x1) Attribute 2 (x2) Target attribute (xt)

{s1} {s1, l1} {l1} {s2} {s2, l2} {l2} {st} {st , lt} {lt}
1 0.4 0.6 0 0 0.7 0.3 0.9 0.1 0
2 0.2 0.8 0 0.5 0.5 0 0 0.8 0.2
3 0 0.9 0.1 1 0 0 0 1 0
4 0.3 0.7 0 1 0 0 0.7 0.3 0
5 0 0.2 0.8 0.3 0.7 0 1 0 0

3.4. Linguistic ID3 algorithm

Linguistic ID3 (LID3) is the learning algorithm for building the
linguistic decision trees from a given training database. Similar to
the ID3 algorithm [18], search is guided by an information based
heuristic, but the information measurements of a LDT are modified
in accordance with label semantics.

The measure of information defined for a branch B and can be
viewed as an extension of the entropy measure used in the ID3.

Definition 6 (Branch entropy). The entropy of branch B is given by

BE(B) = −
|Ft |∑
j=1

P(Fj
t |B) log2(P(Fj

t |B)) (19)

Now, given a particular branch B suppose we want to expand it
with the attribute xj. The evaluation of this attribute will be given
based on the expected entropy defined as follows:

Definition 7 (Expected entropy).

EE(B, xj) =
∑
Fj ∈Fj

BE(B ∪ Fj) · P(Fj|B) (20)

where B ∪ Fj represents the new branch obtained by appending the
focal element Fj to the end of branch B. The probability of Fj given
B can be calculated as follows:

P(Fj|B) =

∑
i ∈D

(B ∪ Fj|xi)∑
i ∈D

(B|xi)
(21)

We can now define the Information Gain (IG) obtained by
expanding branch B with attribute xj as:

IG(B, xj) = BE(B) − EE(B, xj) (22)

The pseduo-code is given in Fig. 3, where LD is the training data
after linguistic translation. The goal of tree-structured learning
models is to make subregions partitioned by branches be less
“impure”, in terms of the mixture of class labels, than the unparti-
tioned dataset. To build a LDT, the most informative attribute will
form the root of a linguistic decision tree, and the tree will expand
into branches associated with all possible focal elements of this
attribute. For a branch, the attributes which has not appeared in
this branch are referred to as free attributes. To expand a particular
branch, the free attribute with maximum information gain will be
appended as the next node, from level to level, until the tree reaches
the maximum specified depth or some other criteria are met.

3.5. Forward branch merging

One of the inherent disadvantages for tree induction algorithms
is overfitting. There are many pruning algorithms were proposed, a
good review are given in [14]. Here we present a different approach
of using ‘merging’ instead of ‘pruning’ to generate compact trees.
In this section, a branch merging algorithm for the LDT model is

discussed. The basic idea is that, we employ breadth-first search in
developing a LDT, at each depth, the adjacent branches which give
similar probabilities on target focal elements are merged into one
branch according to a merging threshold:

Definition 8 (Merging threshold). In a linguistic decision tree, if
the maximum difference between the probabilities of target focal
elements on two adjacent branches B1 and B2 is less than or equal to
a given merging threshold Tm, then the two branches can be merged
into one branch. Formally, if

Tm ≥ maxFt ∈Ft (|Pr(Ft |B1) − Pr(Ft |B2)|) (23)

where Ft = {F1
t , . . . , F |Ft |

t } are focal elements for the target
attribute, then B1 and B2 can be merged into one branch MB.

Definition 9 (Merged branch). A merged branch MB with k nodes
is defined as

MB = 〈M1, . . . , Mk〉

where Mj = {F1
j

, . . . , Fw
j

} is a set of focal elements such that Fi
j

is

adjacent to Fi+1
j

for i = 1, . . . , w − 1. The associate mass for Mj is
given by

mx(Mj) =
w∑

i=1

mx(Fi
j ) (24)

where w is the number of merged focal elements for attribute j.

Where ‘adjacent’ means the fuzzy labels which are defined next
to each other in a natural order. For the example shown in Fig. 1,
{small} and {small,medium} are adjacent focal elements while

Fig. 3. Linguistic ID3 algorithm.
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{small} and {medium} are not. The probability of a merged branch
given a data element x ∈ ˝ × · · · × ˝ can be evaluated by

P(MB|x) =
k∏

r=1

mxr (Mr) =
k∏

r=1

(
wr∑
i=1

mxr (Fi
r)

)
(25)

where k is the length of the merged branch MB and wr for r = 1, . . ., k
is the number of merged nodes of the attribute r for r = 1, . . ., s. Based
on Eqs. (4), (5), (7), (24) and (25) we use the following equation to
evaluate the probabilities on target focal elements given a merged
branch.

P(Fj
t |MB) =

∑
i ∈D

�j
i
P(MB|x)∑

i ∈D
P(MB|x)

(26)

And, the following equation is used when doing classification with
a merged LDT with s branches:

P(Fj
t |x) =

s∑
v=1

P(Fj
t |MBv)P(MBv|x) (27)

When the merging algorithm is applied in learning a linguistic deci-
sion tree, the adjacent branches meeting the merging criteria will
be merged and re-evaluated according to Eq. (26). Then the adja-
cent branches after the first round of merging will be examined in
a further round of merging, until all adjacent branches cannot be
merged further. We then proceed to the next depth. The merging is
applied as the tree develops from the root to the maximum depth
and hence is referred to as forward merging.

4. Experimental studies

In this section, several benchmark prediction problems are
tested with the LID3 algorithm. The prediction results obtained
are compared with several the state-of-art prediction algorithms
such as Support Vector Regression system (SVR), Fuzzy Naive Bayes
and Fuzzy Semi-Naive Bayes (FSNB) [20]. In this paper we use ε-
Support Vector Regression system (ε-SVR) with a Gaussian kernel
and an ε-insensitive loss function [22]. The SVR results present here
are obtained by using a Matlab toolbox for SVM implemented by
Gunn [5] and the parameter settings for each problem are based
on empirical research on these problems by Randon [20]. Fuzzy
Naive Bayes is another linguistic model based on label semantics
and Fuzzy Semi-Naive Bayes presented here is modified from Fuzzy
Naive Bayes by weaken the independence assumption of Naive
Bayes (more details are available in [20]). The results of Fuzzy Naive
Bayes and FSNB presented in his paper is the best results so far from
a set of systematic research.

The measure defined here for evaluating the prediction perfor-
mance is Average Error (AVE), which scales the error according to
range of output (target attribute) space is used for evaluating algo-
rithms’ performance: Given output universe defined by ˝t = [a, b]
and a training set D, AVE is the average modulus error taken as a
percentage of the length of the output universe, formally:

AVE =

∑
i ∈D

|x̂t(i) − xt(i)|

|D|(b − a)
(28)

where |D| represents the number of instances in D. The standard
deviation across D is given by

�E =
√

1
|D|
∑
i ∈D

(�i − AVE)2 (29)

where

�i = |x̂t − xt |
b − a

4.1. 3-D surface regression

In this example, 529 points were uniformly generated describ-
ing a surface defined by equation z = sin(x × y) where x, y ∈ [0, 3]
as shown on the left-hand of Fig. 4. 2209 points are sampled uni-
formly as the test set. The attributes are discretized uniformly by
fuzzy labels, the results in the AVE measure with different number
of fuzzy labels which are respectively defined on input and output
space are listed in Table 2.

It is surprising to see that the number of fuzzy sets used for
output (i.e. z) space does not cause a great difference in error. On
the contrary, the number of fuzzy sets for inputs (i.e. x and y) is
really matter. More fuzzy sets used for discretization, more accu-
rate prediction surface we can obtain. Fig. 5 shows the predicted
surfaces and the error surfaces, where input space are discretized
with 6 fuzzy sets (left-hand column) and 7 fuzzy sets (right-hand
column), respectively.

We now compare these results to those obtained from the ε-SVR
with the following parameters: � = 1, ε = 0.05, C = ∞ (the reasons
for this parameter setting are in [21]). The test errors are shown in
Table 3, compare to ε-SVR, LID3 is a slightly worse. As we can see
from the right-hand side of Fig. 4, ε-SVR has a very good approxi-
mation to the original surface. By comparing Figs. 4 and 5, we can
see that LID3 cannot accurately capture the small ‘tail’ on the left,
while the ε-SVR can. Table 3 also shows the results of fuzzy Naive
Bayes and Fuzzy Semi-Naive Bayes, among them, LID3 (7 fuzzy
labels for the input and 6 labels for the output) is the second best.
For such a function regression problems, higher accuracy could
be obtained by increasing the number of fuzzy labels discretized
for the input space. However, the computing complexity will be
increased extensively with the increasing of the number of fuzzy
labels. For all problems discussed in this paper, we only expected
to obtain equivalent accuracy but better transparency comparing
to other models.

4.2. Predicting the age of Abalone and Boston Housing problem

These two problems are taken from the UCI repository [2]. The
Abalone concerns the problem of predicting the age of abalone
from physical measurements. Abalones are a type of shellfish, the
age of which is accurately determined by cutting the shell through
the cone, staining it, and counting the number of rings through a
microscope, which is a laborious and time consuming task. Boston
Housing problem contains data on housing values in the suburbs of
Boston, USA. The data set contains 506 instances and 13 continuous
attributes (including the target attribute) and one binary attribute.

In our experiments, the instances for each data set are randomly
split into two parts with approximately same number of instances,
one for training and the other for test. This is referred to as 50–50
split experiments. The test errors from 10 runs of 50–50 split exper-
iments on the two data sets are shown in Table 4 where the results
obtained for the Abalone prediction test set by applying ε-SVR with
a Gaussian RBF kernel with parameters: � = 1, ε = 0.05 and C = 5. The
results of LID3 are obtained from the LDTs that discretized with 3
uniformly distributed fuzzy labels at the depth 5. For Boston Hous-
ing problem the ε-SVR parameters are: � = 3, ε = 0.05 and C = 10. The
LID3 results are obtained by the LDTs with 5 uniformly distributed
fuzzy labels at the depth 3. The standard deviation (Std) in Table 4
is the standard deviation of AVE across the experiments.

From Table 4, we can see that ε-SVR has be best performance on
these two data sets. LID3 is the second best in Abalone prediction.
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Fig. 4. Left-hand figure: the original surface of z = sin(x × y). Right-hand figure: the prediction surface by ε-SVR with a Gaussian RBF kernel.

Table 2
Average error for the sin(x × y) problem with different number of fuzzy sets (represented by NF) for discretization on input and output space, respectively.

The number of fuzzy sets (NF) for output

Training error Test error

Input 4 5 6 7 4 5 6 7

NF

4 7.4290 7.4296 7.4254 7.4419 7.1827 7.1834 7.1785 7.1955
5 4.8314 4.8316 4.8262 4.8456 4.6772 4.6777 4.6695 4.6892
6 3.2266 3.2265 3.2160 3.2357 3.1890 3.1895 3.1776 3.1986
7 2.1734 2.1711 2.1653 2.1864 2.1560 2.1555 2.1464 2.1684

Fig. 5. Prediction surfaces (upper figures) and error surfaces (lower figures) where input spaces are discretized by 6 fuzzy sets (left-hand column) and 7 fuzzy sets (right-hand
column), respectively.

Table 3
Comparisons of prediction models in average error on the sin(x × y) problem.

Fuzzy Naive Bayes FSNB ε-SVR LID3

AVE ± �E 16.042 ± 12.817 2.815 ± 2.268 1.452 ± 0.746 2.146 ± 1.795
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Table 4
Prediction results in AVE from 10 runs 50–50 split experiments on the Abalone prediction and the Boston Housing prediction problem, respectively.

Prediction model Abalone Boston Housing

AVE % �E (%) Std AVE % �E (%) Std

Fuzzy Naive Bayes 7.9660 7.2010 0.6638 8.2437 9.0864 0.5034
FSNB 7.0141 6.9277 0.5225 7.7059 8.9876 0.5766
ε-SVR 5.6921 6.0034 0.0894 5.4508 6.7989 0.3874
LID3 6.4327 6.3247 0.3145 8.2022 8.1502 0.4579

But, it does not perform very well in Boston Housing problem where
LID3 gives the equivalent average errors to Fuzzy Naive Bayes.

4.3. Prediction of sunspots

This problem is taken from the Time Series Data Library [7] and
contains data of sunspot numbers between the years 1700 and
1979. For this experiment the data was organized as described in
[27] using a sliding window and the validation set of 35 exam-
ples (1921–1955) was merged into the test set of 24 examples
(1956–1979). This is because a validation set is not required in this
framework. Hence, a training set of 209 examples (1712–1920) and
a test set of 59 examples (1921–1979) are used in this paper. The
input attributes are xT−12 to xT−1 (the data for previous 12 years)
and the output (target) attribute is xT, i.e. one-year-ahead.

The experimental results for LID3, ε-SVR, Fuzzy Naive Bayes
[21] and Fuzzy Semi-Naive Bayes in the AVE measure are shown in
Table 5, where the parameter setting for ε-SVR is as follows: � = 3,
ε = 0.05, C = 5 and the results for FSNB are the best results from a
range of FSNB parameter settings [21]. Results of LID3 present here
are obtained from LDTs discretized by 4 fuzzy labels by percentile-
based method (both on input and output spaces) and at the depth
of 5. The comparison between the prediction data and the original
data are shown in Fig. 6, where the data on the left (1712–1921)
are for training data and the right are (1921–1979) for test.

Table 5 also shows the results of LID3 by applying forward
branch merging where the merging threshold varies from 0.05 to
0.30. From the table, we can see that ε-SVR gives the best results and
the LID3 gives the second best. If we increase the merging threshold
Tm, the size of LDT (i.e. the number of branches) is reduced greatly
while the error rate only changes slightly. For example, compare

Tm = 0 (no merging) and Tm = 0.25, the tree reduced about 98.6% in
size and the error rate only increases 1.91%. Fig. 7 shows the scatter
plot of the actual sunspot number against the predicted number on
59 test data by using Fuzzy Naive Bayes, ε-SVR, non-merged LDT
and merged LDT with Tm = 0.25. In these graphs, for an error free
prediction all points will fall on the line defined by y = x. Roughly,
from the illustration, we can see that SVR and non-merged LDT have
better performance, because predicted values distributed closer to
y = x than other two models.

4.4. Flood forecasting

In this section, a flood forecasting problem is investigated. We
attempt to model the stream flow characteristics of a river. The
database we shall investigate here describes the Bird Creek river
basin in Oklahoma, USA. The data was collected to form part of a
real-time hydrological model inter-comparison exercise conducted
in Vancouver, Canada in 1987 and reported by World Meteoro-
logical Organization (WMO) in 1992. The database describing the
Bird Creek catchment area gives information on two attributes: the
average rainfall (U) given in mm, derived from 12 rainfall gauges
situated in or near the catchment area and the river’s stream flow
(Y) given in m3/s, measured using a continuous stage recorder. Both
values are recorded in the database at 6-h intervals. In this paper
only a subset of the original flood data is used. This is comprised of
2090 training examples and 1030 examples for test.

Flood forecasting is a typical problem of prediction and sev-
eral models had been developed based on the Bird-Creek data. By
using windowing techniques, Clukie and Han [4] extensively devel-
oped the Weather Radar Information Processor System (WRIP) [6].
A Fuzzy Semi-Naive Bayes model is also used to study this problem

Fig. 6. The prediction results obtained from LID3 without merging, where the data on the left (1712–1921) are for training and the right (1921–1079) are for test.
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Table 5
Prediction results in AVE on the sunspot prediction problem.

Prediction model AVE % �E (%) Tree size

Training Test Training Test LDT only

Fuzzy Naive Bayes 9.5514 13.0588 10.7682 13.0213 –
FSNB 5.1301 10.9064 5.4943 9.5208 –
ε-SVR 5.6988 8.9337 5.8328 9.7766 –
LID3 3.7557 8.6793 3.1859 8.8876 5731
LID3 (Tm = 0.05) 3.9146 8.8925 3.3100 8.9437 2285
LID3 (Tm = 0.10) 4.1259 8.9649 3.5013 9.1994 1493
LID3 (Tm = 0.15) 4.9315 9.8419 4.3850 10.1869 757
LID3 (Tm = 0.20) 5.9327 9.8341 5.1525 10.7063 204
LID3 (Tm = 0.25) 7.2166 10.5858 5.9409 10.3711 81
LID3 (Tm = 0.30) 14.0175 18.9539 12.4700 19.1159 5

by Randon [21] with and without windowing techniques. In order
to make direct comparisons with other river flow modelling tech-
niques we shall initially use the same training and test data as in
previous studies. In this paper, windowing technique is not used.
The rainfall values, 〈UT−2,UT−2,UT〉 and stream flow value 〈YT−2, YT−1,
YT〉 are used to produce six steps ahead prediction on stream flow
value ŶT+6. The results obtained from LID3 are compared with the
results of Fuzzy Semi-Naive Bayes and ε-SVR. The results in terms of
average errors are shown in Table 6, where the results of ε-SVR are

based on parameters: � = 3, ε = 0.05 and C = 5. The LID3 results are
obtained based on the linguistic translation by which each attribute
is discretized uniformly by 3 fuzzy labels and the LDT extends with
the maximum depth 6.

As we can see from Table 6, LID3 outperforms the other mod-
els on this problem. However, the size of the LDT is still be very
large (2133 branches without merging). By applying forward merg-
ing, the errors increase only slightly while the number of branches
are significantly reduced. With Tm = 0.30, the LID3 still gives better

Fig. 7. Scatter plot showing original data verses prediction data on sunspot prediction problems. Upper left: Fuzzy Naive Bayes; upper right: SVR; lower left: non-merged
LDT; lower right: merged LDT with Tm = 0.25.
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Table 6
Average errors with standard deviations on test set of the flood forecasting problem.

Prediction model AVE % �E (%) Tree size

Fuzzy Naive Bayes 2.9922 7.3017 –
FSNB 2.9219 7.1798 –
ε-SVR 3.3555 7.6602 –
LID3 2.5625 6.9160 2133
LID3 (Tm = 0.05) 2.5596 6.8865 815
LID3 (Tm = 0.10) 2.5576 6.1244 652
LID3 (Tm = 0.15) 2.6523 6.9574 389
LID3 (Tm = 0.20) 2.7932 6.9225 225
LID3 (Tm = 0.25) 2.7935 6.9258 203
LID3 (Tm = 0.30) 2.8227 7.0835 118
LID3 (Tm = 0.35) 2.9368 7.5019 79
LID3 (Tm = 0.40) 2.9769 7.7628 37

accuracy to Fuzzy Semi-Naive Bayes. However, the tree has only 108
branches and comparing to LID3 without merging, the tree size has
been reduced nearly 94%. The performance on the test set can be
seen from Fig. 8. Although LID3 over-estimates at some peaks, it
still captures the original data well.

5. Linguistic query evaluation

For many practical applications it is not sufficient that a data
model only provides information regarding classifications or pre-
dictions. Often we are interested in using our model to infer
relationships and test hypothesis. Here in this section, a method-
ology for evaluating linguistic queries using linguistic decision
trees within the label semantics framework is proposed. The lin-
guistic decision trees can be represented in label expressions in
the form of a vector �� =

〈
�1, . . . , �n

〉
. � is linguistic expression

of labels which are joining by logical connectives, for example,
� = (small1 ∨ medium2) ∧ ¬ large3.

Definition 10 (Label expressions). The set of label expressions of
LA, LE, is defined recursively as follows:

(i) ∀i Li ∈ LE

(ii) If �, ϕ ∈ LE then ¬ ϕ, �∧ϕ, � ∨ ϕ, � → ϕ ∈ LE

Basically, we interpret the main logical connectives as follows:
¬L means that L is not an appropriate label, L1 ∧ L2 means that both
L1 and L2 are appropriate labels, L1 ∨ L2 means that either L1 or L2
are appropriate labels, and L1 → L2 means that L2 is an appropriate
label whenever L1 is. If we consider label expressions formed from
LA by recursive application of the connectives then an expression
� identifies a set of possible label sets according to the 	-function.

Definition 11 (	-function). Let � and ϕ be expressions generated
by recursive application of the connectives ¬, ∨ , ∧ and → to the ele-
ments of LA. Then the set of possible label sets defined by a linguistic
expression can be determined recursively as follows:

(i) 	(Li(x)) = {S ⊆ F|{Li} ⊆ S}
(ii) 	(¬�) = 	(�)

(iii) 	(� ∧ ϕ) = 	(�) ∩ 	(ϕ)
(iv) 	(� ∨ ϕ) = 	(�) ∪ 	(ϕ)
(v) 	(� → ϕ) = 	(�) ∪ 	(ϕ)

Intuitively, 	(�) corresponds to those subsets of F identified
as being possible values of Dx by expression �. In this sense the

Fig. 8. The stream flow prediction with a merged LDT with Tm = 0.3.
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imprecise linguistic restriction ‘x is �’ on x corresponds to the strict
constraint Dx ∈ 	(�) on Dx [11].

Example 3. Given a variable h representing John’s height and LAh
= {veryshort, short, medium, tall, verytall}, suppose we are told that
“John is not very tall but it is medium to tall”. This constraint can
be interpreted as the logical expression

�h = ¬very tall ∧ (medium ∨ tall)

According to Definition 11, the possible label sets of the given lin-
guistic constraint �h are

	(�h) = 	(¬very tall ∧ (medium ∨ tall))

= {{medium}, {medium, tall}, {tall}}

Two kinds of queries are discussed in this paper: single queries
and compound queries and the evaluation methods are given as
follows.

Single queries Ft :
〈

�1, . . . , �n

〉
This represents the question: Do elements satisfying �� have a

value of xt with description Ft? Consider the vector of linguistic
expression �� = 〈�1, . . . , �n〉, where �j is the linguistic expression
on attribute j. The probability value for Ft conditional on this infor-
mation using a given a linguistic decision tree can be evaluated
through the following steps:

m�j
(Fj) =

⎧⎪⎪⎨⎪⎪⎩
pm(Fj)∑

Fj ∈ 	(�j)

pm(Fj)
if Fj ∈ 	(�j)

0 otherwise

(30)

where pm(Fj) is the prior mass for focal elements Fj ∈Fj derived
from the prior distribution p(xj) on ˝j as follows:

pm(Fj) =
∫

˝j

mx(Fj)p(xj) dxj (31)

Usually, we assume that p(xj) is the uniform distribution over ˝j
so that

pm(Fj) ∝
∫

˝j

mx(Fj) dxj (32)

For example, given LAx={small, large} and x is small (i.e. � = small).
By applying the 	 function (Definition 11), we can generate the
possible label sets for x, so that:

	(�) = 	(small) = {{small}, {small, large}}

Suppose the prior mass assignments are

pm = {small} : 0.3, {small, large} : 0.2, {large} : 0.5

According to Eq. (30) we then obtain,

m� = {small} :
0.3

(0.3 + 0.2)
, {small, large} :

0.2
(0.2 + 0.3)

= {small} : 0.6, {small, large} : 0.4

Hence, m�({small}) = 0.6 and m�({small, large}) = 0.4 according to
the given the linguistic constraint � = small. For branch B with k
nodes, the probability of B given �� is evaluated by

P(B|��) =
k∏

r=1

m�r (Fr) (33)

and therefore, by the Jeffrey’s rule [9]

P(Ft |��) =
s∑

v=1

P(Ft |Bv)P(Bv|��) (34)

Compound queries �t :
〈

�1, . . . , �n

〉
This represents the question: Do elements satisfying �� have a

value of xt satisfies the linguistic expression �t? Given a linguistic
expression �� = 〈�1, . . . , �n〉, where �j for j = 1, . . ., n is the linguis-
tic expression on attribute j, and �t (the linguistic expression on the
target attribute). The evaluation method for compound queries is
based on the single queries.

P(�t |��) =
∑

Ft ∈ 	(�t )

P(Ft |��) (35)

Example 4. Consider the y = sin(x × y) problem, 7 fuzzy labels
are defined on input attributes (i.e., x and y) and target attribute
z, respectively. LAx = LAy = LAz = {extremely small (es), very
small (vs), small (s), medium (m), large (l), very large (vl),
extremely large (el)}. From this we obtain the focal ele-
ments describing each attribute: Fx = Fy = Fz = {{es, vs}, {vs},
{vs, s}, {s}, {s, m}, {s, m}, {m}, {m, l}, {m, l}, {l, vl}, {vl}, {vl, el}}.

Suppose we are given:

�x = ¬ very small ∧ small ∧ ¬ medium
�y = ¬ large ∧ (very large ∨ extremely large)

Given the query for evaluation Fi
z : 〈�x, �y〉 for i = 1 : |Fz |. According

to the above Eqs. (30), (33) and (34), we obtain:

P({es, vs}|�) = P({vs}|�) = P({s}|�) = P({s, m}|�) = 0

P({m}|�) = 0.0003, P({m, l}|�) = 0.0006, F = P({l}|�) = 0.0152,

P({l, vl}|�) = 0.1646, P({vl}|�) = 0.2125, P({vl, el}|�) = 0.2338

Suppose the query for evaluation is a compound query

�z = ¬large ∧ very large

According to the 	-function, we obtain:

	(�z) = {{very large}, {very large, extremely large}}
Then, according to Eq. (35) we obtain:

P(�z |〈�x, �y〉) = P({vl}|〈�x, �y〉) + P({vl, el}|〈�x, �y〉)
= 0.2125 + 0.2338 = 0.4463

The above example is also used in Section 4.1 for studying
the performance of the LDT model. In this section, we emphasize
its ability of supporting linguistic queries. Combining these two
experiments, we can see its superiority in both accuracy and trans-
parency. That is also the significance of using label semantics for
designing data mining models. Some recent research in linguistic
rule induction using label semantics also yields similar results [16].

6. Conclusions and discussions

In this paper, a tree-structured prediction model based on a
framework for Modelling with Words has been described. Lin-
guistic decision tree was proposed as a classification model for its
advantages of handling uncertainties and being transparent. In this
paper, the methodology of using LDT to do prediction was proposed
and tested on several benchmark problems such as function regres-
sion, time series prediction and real-world forecasting applications.
By empirical studies, we show that LDT model has equivalent pre-
diction ability comparing to several state-of-art prediction model
such as ε-SVR and Fuzzy Semi-Naive Bayes. A forward merging has
been described to increase transparency without a great sacrifices
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on accuracy. Finally, we discuss the method to evaluate linguistic
queries by LDT and tested on a toy problem.

We are not arguing that the LDT model is a best algorithm in
terms of accuracy. Although we cannot say LDT model outper-
form others, we may say that LDT model has equivalent prediction
performance comparing to other prediction algorithms mentioned
in this paper. On the other hand, LDT model has better trans-
parency in the following two aspects: (1) unlike other black-box
prediction models, a LDT can be interpreted as a set of linguistic
rules, which may provides the information how the predictions are
made. (2) The high-level knowledge representation structure of the
LDT model allows us to evaluate linguistic queries based on label
semantics framework.
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