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ABSTRACT

The primary use of breast ultrasound today is to help diagnose
breast abnormalities detected by a physician during a physical
exam and to characterize different types of breast conditions,
including both benign and malignant lesions. For this pur-
pose, a large number of features are computed to determine
the nature of a breast abnormality. This paper aims to focus on
the feature selection problem for classifying benign and ma-
lignant breast tumors to assist the clinical diagnosis. We for-
mulate the problem of choosing discriminative features as a
decomposition of the computerized feature matrix into a low-
rank principal matrix and a sparse error matrix. The low-rank
principal matrix contains the best distinctive features for de-
termining the benign and malignant cases whereas the sparse
error matrix has the features with a less identification capabil-
ity. By identifying and selecting essential features, the low-
rank matrix based feature selection method can improve the
classification outcomes.

Index Terms— feature selection, robust principal com-
ponent analysis, low-rank matrices, breast sonography.

1. INTRODUCTION AND MOTIVATION

Breast ultrasound (US) is frequently used to evaluate breast
abnormalities that are found during a physician performed
clinical breast exam. It can capture several different types
of breast tumor conditions, including both benign (non-
cancerous) and malignant (cancerous) lesions. For example,
benign tumors have a relevantly uniform growth, usually pro-
ducing images with round, smooth and well-defined bound-
aries. On the other hand, malignant tumors tend to generate
an irregular pattern of impedance discontinuities, which will
be represented as irregular, spiculate or ill-defined boundaries
[1]. With the aim of distinguishing the nature of breast le-
sions, a large number of features, including sonographic and
textural features, are computed and quantify the characteris-
tics of tumor contours and textures. However, the issue for
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effectively choosing the essential features still remains a chal-
lenging problem due to the large variance of normal/abnormal
lesion differences and the intrinsic limitations of the imaging
process. Therefore, it is desirable to select the most dis-
criminative features that yield better quantifications of tumor
characteristics. There are many feature selection methods,
such as principal component analysis (PCA) [2], independent
component analysis [3] and linear/non-linear discriminant
analysis [4] have been extensively used in literature. Among
them, PCA is the most widely used statistical tool for di-
mensionality reduction today. However, its performance and
applicability in real scenarios are limited by a lack of robust-
ness to outlying or corrupted observations [5].

In recent decades, a number of approaches to strengthen-
ing PCA have been developed in literature. A new approach
referred to as robust principal component analysis (RPCA)
was proposed by Candès and co-researchers [5, 6], in which
data matrix is the superposition of a low-rank component and
a sparse component. In theory, under certain assumptions, it
is possible to recover both the low-rank and the sparse com-
ponents exactly by solving the principal component pursuit
(PCP). The theoretical and empirical results suggested that
the principal components of a data matrix can be restored
even though a fraction of its entries are arbitrarily corrupted.
There are many important applications can naturally be mod-
eled using this methodology, such as video surveillance, face
recognition, bioinformatics and web search [6]. In this work,
we utilize this technique to establish a feature selection algo-
rithm. We formulate the problem of choosing principal fea-
tures as a low-rank matrix plus a sparse contribution. The
low-rank principal matrix represents the best distinctive fea-
tures for differentiating malignant tumors from benign cases,
and the sparse error matrix contains the features with a less
distinguishability due to the intrinsic and extrinsic corruption.

The paper is organized as follows. Section 2 formulates
the feature selection problem based on the RPCA model. The
ultrasound image acquisition and the developed methods are
introduced in Section 3. The simulation results and discus-
sions are presented in Section 4. Finally, we conclude the
paper in Section 5.
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2. PROBLEM SETTING

Motivated by the latest research on RPCA [6], the feature se-
lection problem can be formulated as a RPCA model. The
computerized tumor features are subject to the low-rank prop-
erty. Meanwhile, the error matrix is sparse due to the two
reasons: 1) the number of the principal features is essentially
sparse compared with the relatively large feature set, and 2)
the features with less discriminative power are in small num-
ber.

Here we use the notion adopted in [5]. Let the feature
matrixD ∈Rm×n be am×nmatrix generated by the feature
extraction method. It can be decomposed as:

D = A+ E (1)

where matrix A is the principal feature matrix known to be
low rank, and E is the sparse error matrix. Given the feature
matrix D, the essential purpose of the feature selection is to
uncover the principal components in matrix A. Although un-
der general conditions this problem is intractable to solve, re-
cent studies [6] have discovered that the principal component
pursuit, a convex program, can effectively solve this problem
under broad conditions. The low-rank matrix A can be com-
puted by solving the following convex optimization problem:

min
A,E
‖A‖∗ + λ‖E‖1 s.t. A+ E = D (2)

where ‖ · ‖∗ represents the nuclear norm of a matrix, ‖ · ‖1 is
the l1 norm denoting the sum of the absolute values of matrix
entries, and λ > 0 is a weighting parameter. In our approach,
the low-rank and error sparsity are modeled by nuclear norm
and l1 norm according to the definition of Eq. 2. The pro-
posed methods are described in the following section.

3. MATERIALS AND METHODS

3.1. Data Acquisition

The digital ultrasound image database is provided by the
Harbin Institute of Technology and the Second Affiliated
Hospital of Harbin Medical University. Ultrasound images
were performed using a high-resolution Vivid7 sonography
system (GE Healthcare, Milwaukee, WI) and 7.5 14 MHz
liner transducer. The tumor boundaries are marked by five
radiologists with more than ten years experience. 321 patho-
logically proven benign and malignant cases are selected and
categorized into four classes. The training datasets comprise
92 benign cases and 172 malignant cases, and the test datasets
have 21 benign cases and 36 malignant cases. An example of
supplied image and its marked result are shown in Fig. 1.

3.2. Feature Extraction

According to [7], the features of breast US images can be
divided into four categories: texture, morphologic, model-

(a) (b)
Fig. 1. (a) The original US image. (b) The marked US image.

based and descriptor features. In this work, we focus on the
morphological and textural features due to their remarkable
discrimination power. More implementation details are given
in [8].

3.2.1. Morphologic features

With widespread use of ultrasound, the American College
of Radiology developed a BI-RADS lexicon for breast ultra-
sound to standardize the characterization of ultrasonic lesions
[9]. Based on the description of these BI-RADS features, we
compute the contour moment, improved chain code, substan-
tial depression, and three mathematic ratios to determine be-
nign breast nodules from malignant cases.

Contour moment is a computerized feature by summing
over all the pixels of the contour. In general, the image mo-
ments Mpq are calculated by:

Mpq =
∑
x

∑
y

I (x, y)xpyq (3)

where I(x, y) is the pixel intensity at location (x, y), and
p, q = 0, 1, 2, .... We adopted the 7 Hu’s invariant moments
defined in [10] as the descriptors to characterize the solid
breast nodules.

Freeman chain code is one of the most effective chain
code representations to describe the contour. In order to cap-
ture the unevenness of the contour, we introduce a new angle
chain by weighting the edge between two adjacent nodes. By
using the angle chain, five features are computed as:
• Normalized sum angle
•Maximum length of consecutive subsequence
• Average length of consecutive subsequence
•Most frequent length of consecutive subsequence
• Normalized number of most frequent length

The consecutive subsequence denotes as the longest sub-
sequence in the angle chain containing none zero values.

The substantial depression feature is calculated to char-
acterize the abnormal lesion contour. Here, we only consider
the substantial depression features since protuberance and de-
pression normally appear concurrently.

In addition, three mathematic ratios are considered, and
they are defined as follows:
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• D:W ratio — the ratio of the depth to the width of a le-
sion.
• L:S ratio — the length ratio of the major (long) axis to the
minor (short) axis of the equivalent ellipse of the lesion.
• C:O ratio — the ratio of the convex hull area to the whole
area of a lesion.

3.2.2. Textural features

The textural variation between normal and abnormal tissues is
an effective feature for classifying breast tumors. The spatial
gray-level dependence (SGLD) matrices are widely adopted
to measure the textures in images. In this work, totally 140
SGLD features are extracted for distinguishing benign and
malignant nodules.

3.3. Feature Selection

In total, we compute 1285 features with different parameter
settings, including morphological and textual features. With
so many features available, the crucial task is to find an opti-
mal set of features with relative low dimension. As we pre-
viously mentioned, the 1285-dimentional feature matrix D
can be formulated as a sum of a low-rank matrix A and a
sparse error matrix E. As a result, the problem of feature se-
lection is converted to the problem of recovering a complete
low rank matrix from its noisy observation through a convex
optimization program. Lin et al.[11] recently addressed this
problem by using an augmented Lagrange multiplier (ALM)
algorithm. Following [11], the Lagrangian function of Eq.2
is:

L(A,E, Y, µ) = ‖A‖∗ + λ‖E‖1 + 〈Y,D −A− E〉

+
µ

2
‖D −A− E‖2F (4)

where Y and µ are Lagrangian multipliers, µ is a posi-
tive scalar, 〈P,Q〉 = tr(PQT ) is trace of matrix multipli-
cation between P and Q, and ‖ · ‖F is Frobenius norm.
Eq. 4 would solve PCP by repeatedly setting (Ak, Ek) =
arg minA,E L(A,E, Yk, µk), and then updating the Lagrange
multiplier matrix via Yk+1 = Yk + µk(D − Ak − Ek). k is
the iteration index. For the particular low-rank and sparse de-
composition problem, Lagrange multiplier should be chosen
with the constraint in Eq. 2, thus leading to simple update
rules for Y and µ. It turns out that updating Ak and Ek once
when solving (Ak, Ek) = arg minA,E L(A,E, Yk, µk) is
sufficient for Ak and Ek to converge to the optimal solution
for the RPCA. This is the idea of the inexact ALM method
proposed in [11] which requires one singular value decompo-
sition step per iteration, making the algorithm very efficient
for large scale data. In the algorithm, the stopping criterion is
‖D −A− E‖F <= δ‖D‖F , with δ = 10−7.

Algorithm 1 Feature selection using the RPCA
1. Take the training feature matrix D ∈ R264×1285.
2. Apply the RPCA to D with pre-specified values of λ.
3. Take the low rank components of A as the selected
training features for the SVM classifier.
4. Repeat Step 2 and Step 3 for the test datasets, and take
the low rank components as the selected test features.
5. Classify the tumors into benign/malignant category.

3.4. Classification

Support vector machines (SVM), a well-known classifier, is
applied to evaluate the performance of the selected features.
In SVM, kernel functions are used to map the input data into a
higher dimension space where the data are supposed to have
a better distribution, and then an optimal separating hyper-
plane is chosen. Here we utilize the linear kernel and tune the
parameters to yield the best classification results.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

In the experiments, 321 clinically diagnosed benign and ma-
lignant images are used to train and test the performance of
the proposed method. The RPCA is employed to choose the
best distinctive feature set as an input to the SVM classifier.
The proposed algorithm is described in Algorithm 1. The pa-
rameter λ is used to adjust the sparsity of the error matrix E
and assigned the values ranging from 0.06 to 0.08.

In Table 1 and Table 2, the classification results are com-
pared to the ones obtained by using the classical PCA for
feature selection in terms of accuracy, specificity, sensitivity,
positive predictive value (PPV) and negative predictive value
(NPV). The computation of these evaluation criteria can be
found in [7]. For the sake of fair comparison, the number
of the principal components in the classical PCA is chosen
as same as the rank of the low-rank matrix computed from
the RPCA. Fig. 2 shows the receiver operating characteristic
(ROC) curve evaluation of the classification accuracy using
these two feature selection methods. By examining the ex-
perimental results, we can see that the RPCA clearly achieves
superior classification results comparing to the classical PCA
in all defined evaluation criteria. We notice that in the classi-
cal PCA, by increasing the number of principal components
in small step, it does not much affect the outputs unless a
larger step applied. However, the RPCA generates more vi-
brating results by tuning the parameter λ to generate different
low-rank matrices.

The experiments indicate that the RPCA provides an ef-
fective means to select the relevant and important features
from a large set of features, resulting in an improved perfor-
mance for the breast tumor classification. The low-rank based
feature selection approach could be interesting for enhancing
the computer-aided diagnosis system to further increase the
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Fig. 2. The ROC curves of classification using the RPCA and
the classical PCA.

Table 1. The classification performance using the RPCA
Experiment 1 2 3 4 5 6

Rank 65 66 68 69 70 71
Accuracy(%) 82.5 84.2 84.2 85.9 85.9 85.9
Sensitivity(%) 72.0 73.1 74.9 75.9 78.3 78.3
Specificity(%) 90.6 93.6 90.9 93.8 91.2 91.2

PPV(%) 85.7 90.5 85.7 90.5 85.7 85.7
NPV(%) 80.6 80.6 83.3 83.3 86.1 86.1

Table 2. The classification performance using the PCA
Experiment 1 2 3 4 5 6

Np
∗ 65 66 68 69 70 71

Accuracy(%) 66.7 66.7 66.7 66.7 66.7 66.8
Sensitivity(%) 53.1 53.1 53.1 53.1 53.1 52.9
Specificity(%) 83.9 83.9 83.9 83.9 83.9 86.9

PPV(%) 80.9 80.9 80.9 80.9 80.9 85.7
NPV(%) 58.3 58.3 58.3 58.3 58.3 55.6

∗ Np is the number of principal comonents

diagnostics accuracy and decrease the number of unneeded
biopsies.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a robust feature selection
method based on a newly proposed RPCA technique of re-
covering a low-rank matrix from a high-dimensional data ma-
trix with corrupted observations. The feature selection prob-
lem can be formulated as a low-rank principal matrix plus a
sparse error matrix. The classification results have been com-
pared to the classical PCA and shown the potentiality of us-
ing this feature selection approach to improve breast cancer
computer-aied diagnosis systems. In future, we would like to
investigate more effective visual features to be integrated in

the current framework for measuring the variance of abnor-
mality in breast tumors. Also, we are interested in extending
of our work to other medical image modalities.
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