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Abstract—We establish a new set of features for differenti-
ating benign from malignant breast lesions using ultrasound
(US) images. Two types of features (sonographic and textural
features) are considered. Among them, three sonographic fea-
tures are novel. Sonograms of 321 pathologically proven breast
cases are analyzed and classified into benign and malignant
categories. The discrimination capability of the extracted fea-
tures are evaluated using the support vector machines (SVM)
in comparison with the results obtained from artificial neural
networks (ANN) and K-nearest neighbor (KNN) classifier. The
simulations demonstrate that the proposed algorithm can be an
integral part to US computer-aided diagnosis (CAD) systems
for breast cancer or an independent program to help accurately
distinguish benign solid breast nodules from malignant nodules.

Keywords-breast tumor; feature extraction; computer-aided
diagnosis; breast sonography.

I. INTRODUCTION

Computer-aided diagnosis (CAD) systems, which utilize

ultrasound (US) imaging to help radiologists in breast cancer

detection and classification, are becoming a cutting-edge

research field in medical image processing. Recently, several

CAD approaches based on linear discriminant analysis [1],

support vector machines (SVM) [2], artificial neural network

(ANN) [3] and so on have been proposed. Most of these

CAD systems require a large number of image samples to

train the models or construct the rules for classification.

However, a large amount of ultrasound images are not easy

to be collected in the real-world. How to build a high-

performance CAD system with limited image resources is

therefore a crucial task. In [4], the authors applied textural,

fractal and histogram-based features to a Fuzzy-SVM clas-

sifier using only 87 US images. The purpose of this study

is to discover and analyze a new suit of sonography and

textural features with high discrimination capacity in order

to reduce the training samples in the classification stage.
In this paper, two types of features are chosen to char-

acterize a breast tumor. The sonographic features represent

the sonographic characteristics appearing in the US images.

A new set of moment and angle chain features are inves-

tigated and specifically adapted for US images to capture
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the contour characteristics of tumors. The ratio features

have been well-established in conventional CAD systems

and approved to be effective [5]. Therefore, three ratios

are considered here to incorporate three clinically useful

indicators. In addition, the improved depression features

based on the substantial depressions [3] are defined by the

representative convex and concave points. The co-occurrence

matrix based local features [6] are integrated into the feature

set as textural features. Three classification methods are

employed to evaluate the discrimination performance of the

features. The experimental results indicate that the extracted

features have a superior capability of distinguishing benign

and malignant nodules.

The paper is organized as follows: In Section II, the

image database acquisition and feature extraction methods

are described. Section III presents the experimental results

using three classifiers. Finally, conclusions and future work

are summarized in Section IV.

II. MATERIALS AND METHODS

A. Data Acquisition

The digital ultrasound image database was provided by

the Harbin Institute of Technology and the Second Affiliated

Hospital of Harbin Medical University. Ultrasound images

were performed using a high-resolution Vivid7 sonography

system (GE Healthcare, Milwaukee, WI) and 7.5 ∼ 14 MHz

liner transducer. The tumor boundaries were marked by five

radiologists with more than 10 years experience. There are

321 pathologically proven benign and malignant cases in the

database. They are categorized into four classes. The training

datasets contain 92 benign cases and 172 malignant cases,

and the test datasets have 21 benign cases and 36 malignant

cases. An example of supplied image and its marked result

are shown in Fig. 1.

B. Feature Extraction

We aim to automatically discriminate and classify breast

lesions into benign and malignant classes through multiple

sonographic features and local texture analysis. Based on

a classification scheme proposed in [5], the features of

breast US images are divided into four categories: texture,
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(a) (b)

Figure 1. (a) The original US image. (b) The marked US image.

morphologic, model-based and descriptor features. Model-

based features are complex and involve a complicated

estimation of the model parameters. However, descriptor

features are generally the empirical classification criteria of

the radiologists and have no numeric expressions. Thereby,

we focus on the texture and morphological features. Since

most of the morphological features are calculated from the

local characteristics of the lesion, such as the shape and

margin. We adopt the name of sonographic features for

preciseness.

1) Sonographic Features: With widespread use of sonog-

raphy, the American College of Radiology recently devel-

oped a BI-RADS lexicon for breast sonography to stan-

dardize the characterization of sonographic lesions. Based

on the description of these BI-RADS features, we compute

the contour moment, chain code, substantial depression, and

three mathematic ratios to determine whether a breast nodule

is malignant or benign. The details of these features are

described as followings:

Moment
A moment is a quantitative measure of the shape of a set

of points, therefore it is used to characterize a contour by

summing over all the pixels in the contour. In general, the

moment of order (p+ q) is defined as [7]:

Mpq =
N∑

i=1

Ii (x, y)xpyq (1)

where Ii(x, y) is the intensity of the ith pixel at location

(x, y), and N is the total number of pixels in the contour.

A central moment can be calculated by [7]:

μpq =
N∑

i=1

Ii (x, y) (x− x̄)p(y − ȳ)q (2)

where {x̄, ȳ} = {M10/M00,M01/M00}. In practice, nor-

malized moments are often used and can be written as [7]:

ηpq =
μpq

M
(p+q)/2+1
00

(3)

In [8], Hu proposed a method to compute invariant

moments. The essential idea is that by linearly combining

the different normalized central moments, it is possible to

create invariant functions representing different aspects of

Figure 2. The code of direction.

Table I
THE WEIGHTED VALUE OF EDGE IN FOUR DIRECTIONS

The acute turning angle between weighted value
two nodes in the chain code

0◦ 0
45◦ 1
90◦ 2
135◦ 3

the image in a way that is invariant to scale, rotation, and

reflection. We choose the 7 Hu’s moments defined in [8] as

the descriptors to characterize the solid breast nodules.

Improved Chain Code
Chain code is also a popular way to describe the contour.

Freeman chain code [9] is one of the most effective chain

code representations. Here, we introduce a new chain code as

a descriptor of breast tumor. Basically, a polygon is defined

as a sequence of code in one of eight directions and each

direction is designated by an integer from 0 to 7, as shown

in Fig. 2. In order to capture the unevenness of the contour,

we design an angle chain. For example, we have a normal

chain code ”0-1-1-4-5-6-3-2-2-3-2”. We then yield a new

sequence ”3-0-1-3-3-1-3-0-3-3” via Table I by weighting the

edge between any two nodes in the original chain code.

Based on the angle chain, five features can be defined as:

• Normalized sum angle (F1):

F1 =
1

3R

R∑

i=1

Vi

where Vi is the value of ith node in the angle chain

and R is the number of the nodes.

• Maximum length of consecutive subsequence (F2):

F2 = max (Lj)

where Lj is the length of the jth consecutive subse-

quence. The consecutive subsequence is the longest

subsequence in the angle chain containing none zero

value. For instance, ”1-3-3-1-3” is a consecutive sub-

sequence of the angle chain ”3-0-1-3-3-1-3-0-3-3”.

• Average length of consecutive subsequence (F3):

F3 =
1
S

S∑

j=1

Lj
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Figure 3. Depressions and convex hull of a lesion.

where S is the total number of consecutive subse-

quences.

• Most frequent length of consecutive subsequence (F4):

F4 = arg max
Lj

P (Lj)

where P (·) is the discrete probability distribution of

the length of consecutive subsequences.

• Normalized number of most frequent length (F5):

F5 =
1
T
count (F4)

where count (·) is to count the number of subsequences

with the most frequent length, and T is the total number

of subsequences.

Substantial Depression Values
The spiculation, irregular shape and abnormal contour of a

lesion are important sonographic features that characterize a

malignant breast lesion. The depression values are effective

properties to quantify these two sonographic features. Rather

than consideration of both protuberance and depression as

proposed in [3], we only compute substantial depression

based features since protuberance and depression normally

appear concurrently. The depressions of a lesion are shown

in Fig. 3. The depression features can be calculated through

the following steps:

• Step 1: draw the convex hull enclosing the lesion;

• Step 2: subtract the lesion from the convex hull to

obtain the initial depressions;

• Step 3: threshold the initial depressions via a specified

value of the area of depressions;

• Step 4: compute the depression values listed as follows:

(1) the number of the depressions;

(2) the normalized area of the first, second and third

greatest depression;

(3) the normalized average area of all the depressions.

The normalization is computed by using the area of the

entire lesion divided by the area of depression.

Ratios In this work, three mathematic features of different

ratios are considered which are used as three clinical indi-

cators to describe the shape characteristics of breast tumors.

They are defined as:

• D:W ratio — is the ratio of the depth to the width

of a lesion, which is derived from the minimal cir-

cumscribed rectangle of the lesion. The larger the D:W

ratio, the more likely the lesion is malignant.

• L:S ratio — is the length ratio of the major (long) axis

to the minor (short) axis of the equivalent ellipse of

the lesion. Clearly, the L:S ratio is independent of the

scanning angle but may be affected by the compressing

pressure.

• C:O ratio — is the ratio of the convex hull area to

the original area of a lesion. Obviously, the greater the

degree of depression of a lesion contour, the bigger the

ratio value is.

2) Texture Features: An ultrasound image consists of

many pixels with different values of gray level intensity.

Different tissues have significantly different textures. The

textural variation between benign and malignant is an ef-

fective feature for classifying breast tumors. The proposed

method exploits the distribution of co-occurring values at

given offset over an image as features to distinguish benign

solid nodules from malignant nodules. The textural features

are derived from the spatial gray-level dependence (SGLD)

matrices.

SGLD matrix based features are well defined and widely

used in measuring texture in images. SGLD matrices are

two-dimensional histograms. An element of the SGLDθ ma-

trix P (i, j, d, θ) is defined as the joint probability of the gray

levels i and j separated by distance d and along direction

θ. In order to simplify the computational complexity, the

value of θ are often given as 0◦, 45◦, 90◦, and 135◦, and

the distance is often defined as the Manhattan distance.

Texture features can be extracted from SGLD matrices

with different distances d and directions θ. In practice,

given a distance d, four SGLD matrices can be calculated

corresponding to 0◦, 45◦, 90◦, and 135◦, respectively, and

produce a set of four values for each 14 measures referred

in [10]. For each measurement, we can compute the mean

and range of the four values. Therefore, a set of 28 textural

features is extracted from these four matrices for a given

distance d. There are five d values (d = 1, 2, 4, 8, 16) [4],

hence, totally 140-dimentional texture features are used to

identify breast tumor.

C. Breast Tumor Classification

Three well-known classifiers (SVM, ANN, KNN) are

employed to evaluate the performance of the extracted

features. For the SVM, we utilize linear kernel, polynomial

kernel, Gaussian radial-basis function kernel and sigmoid

function kernel. We tune the parameters for each kernel to

yield the best classification results. In ANN, a general three

layer perceptron neural network and the back propagation

learning rule are used. We change the neural network’s

topological structure and learning parameters to improve the

performance. The final results are obtained by averaging
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the outputs from all the artificial neural networks. In the

KNN, we adjust K values from a range of [5, 15]. The final

outcome are the average over the different K values.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

In the experiments, 321 clinically diagnosed benign and

malignant cases are used to train and test the performance of

the proposed method. Table II and Table III list the obtained

classification results. In Table II, we can see that SVM

produces the highest true positive rate, and ANN has the

highest true negative rate among these three classifiers, while

KNN obtains the worst results compared to the other two

methods in terms of false positive rate. Table III indicates

that the SVM achieves the highest accuracy, specificity and

PPV, meanwhile the ANN yields the best sensitivity and

NPV. The performances of all three classifiers achieve over

80% accuracy by combining the sonographic and textural

features. The ROC curves of the SVM, ANN and KNN are

plotted in Fig.4 which shows that the SVM gains the best

performance consistently with the previous results.

Table II
RESULTS OF THREE CLASSIFIERS

Algorithms TP* FP* TN* FN*
SV M 106 7 173 35
ANN 104 9 174 34
KNN 100 13 169 39

* TP: True Positive; FP: False Positive;
TN: True Negative; FN: False Negative.

Table III
PERFORMANCES OF THREE CLASSIFIERS

SVM ANN KNN
Accuracy(%∗) 86.92% 86.60% 83.80%

Sensitivity(%∗) 75.18% 75.36% 71.94%
Specificity(%∗) 96.11% 95.08% 90.37%

PPV (%∗) 93.81% 92.04% 88.50%
NPV (%∗) 83.17% 83.65% 81.25%

* Accuracy = TP+TN
TP+TN+FP+FN

× 100;

Sensitivity = TP
TP+FN

× 100;

Specificity = TN
TN+FP

× 100;

Positive predictive value (PPV ) = TP
TP+FP

× 100;

Negative predictive value (NPV ) = TN
TN+FN

× 100;

IV. CONCLUSIONS AND FUTURE WORK

We studied a new integrated set of sonographic and

textural features and investigated their use in the breast

tumor classification for differentiating the malignant and

benign lesions. The moment features are newly introduced

to describe the contour of the breast lesions in sonography.

The angle chain code is devised to capture the unevenness

of lesion contours. The discrimination capability of these

extracted features are evaluated via three popular classifiers.

The experiments show that the combination of sonographic

Figure 4. ROC Curves of three classifiers.

and textural features achieves good classification results to

discriminate benign to malignant nodules. The future work

will concentrate on building a fully automated CAD system

for breast ultrasound based on the developed feature set.
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