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a b s t r a c t

Multifocus image fusion has emerged as a major topic in computer vision and image processing commu-
nity since the optical lenses for most widely used imaging devices, such as auto-focus cameras, have a
limiting focus range. Only objects at one particular depth will be truly in focus while out-of-focus objects
will become blurry. The ability to create a single image where all scene areas appear sharp is desired not
only in digital photography but also in various vision-related applications. We propose a novel image
fusion scheme for combining two or multiple images with different focus points to generate an all-in-
focus image. We formulate the problem of fusing multifocus images as choosing the most significant fea-
tures from a sparse matrix obtained by a newly developed robust principal component analysis (RPCA)
decomposition method to form a composite feature space. The local sparse features that represent salient
information of the input images (i.e. sharp regions) are integrated to construct the resulting fused image.
Experimental results have demonstrated that it is consistently superior to the other existing state-of-the-
art fusion methods in terms of visual and quantitative evaluations.

! 2013 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Due to the limited depth of field in commonly used optical
lenses, only objects within a certain range of distances from the
imaging devices will be captured and recorded sharply whereas
objects at other distances will be blurred (or defocused) (Tian
and Chen, 2012). This is undesired for accurately interpreting and
analyzing images, such as images acquired from surveillance
(Haghighat et al., 2011) or optical microscopic systems (Vivanco
et al., 2009). Image fusion technique provides a promising way to
solve this problem by combining two or multiple images of the
same scene that are taken with diverse focuses into a single image
in which all the objects within the image are in focus (Ludusan and
Lavialle, 2012). Multifocus image fusion has been proven to be an
effective way to extend the depth of defocused images (Hong
et al., 2007). It has been used in a wide variety of applications like
computer vision (; Hong et al., 2007; Tian et al., 2011), remote
sensing (Bai et al., 2011), digital imaging (Zhang and Blum, 1999;
Aslantas and Kurban, 2010), and microscopic imaging (Hariharan
et al., 2007; Malik and Choi, 2009).

The existing fusion methods, based on Stathaki’s definitions
(Stathaki, 2008), can bemainly categorized into two groups: spatial
domain and transformdomain techniques. In spatial domain, fusion
rules are directly applied to image pixels or image regions. The fused

image can be constructed as a linear combination of input images,
where the useful information is transferred to the fusion result by
means of a weighting function (Tian et al., 2011; Zhang and Ge,
2009). For instance, Li et al. (2001) devised a scheme that fusedmul-
tifocus images by dividing the source images into blocks and com-
bining them based on the spatial frequency (SF). In the past few
years, they have published more sophisticated fusion techniques
at different levels of complexity (Li and Wang, 2008; Li et al.,
2002). Miao and Wang (2005) proposed a fusion method using the
ratio of blurred and original image intensities.Wen et al. (2007) pro-
duced a sharp target gradient field via minimizing the gradient dif-
ference and intensity difference with respect to the objective
gradient field and intensity constraints. Huang and Jing (2007) com-
pared several clarity measures defined in the spatial domain, such
as variance, energy of image gradient, spatial frequency, and evalu-
ated their capability to distinguish clear image blocks from blurred
image blocks. The major advantages of spatial domain based fusion
methods are the simplicity to implement and low computational
complexity. Moreover, the final fused image contains original infor-
mation from input images. However, such methods are often sub-
ject to noise interference and blocking artifacts since the selection
criteria are computed based on single or neighboring pixels (Lewis
et al., 2007; Wan and Achim, 2009). The presence of image noise
could significantly degrade image quality by adding spurious and
extraneous information, thus resulting in ambiguous selection in
determining focused versus defocused pixels or regions (Malik
and Choi, 2008). Various noise filters can be employed to tackle this

0167-8655/$ - see front matter ! 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.patrec.2013.03.003

⇑ Corresponding author. Tel./fax: +86 010 82316875.
E-mail address: zcqin@buaa.edu.cn (Z. Qin).

Pattern Recognition Letters 34 (2013) 1001–1008

Contents lists available at SciVerse ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec



Author's personal copy

problem, but they also remove the sharpness information in
addition to the noise (Shim et al., 2011). In transformdomain, image
fusion algorithms are implemented in a non-image domain via a
certain transform technique, such as discrete cosine transform
(Haghighat et al., 2011), pyramid transforms (Wang and Chang,
2011), multiscale geometric transforms (Zhao et al., 2010), and
wavelets (Li et al., 2010). A multiresolution transform has been
widely adopted to perform image fusion tasks (Zhao et al., 2010;
Tian and Chen, 2010; Li et al., 2010). The idea is to decompose the
source images into multiresolution representations, and integrate
the decompositions to form a composite fusion space according to
certain fusion rules. The fused image is finally constructed by apply-
ing an inverse multiresolution transformation.

Wavelet transform, among the multiresolution based fusion
schemes, has become popular in image processing field as it pro-
vides a natural partition of the image spectrum into multiscale
and oriented subbands (Wan and Achim, 2009). Yang (2011) devel-
oped a discrete wavelet transform (DWT) based fusion approach by
applying different fusion strategies to high and low frequency coef-
ficients, respectively. Tian and Chen (2012) studied the spreading
of the wavelet coefficients distribution and evaluated its potential
use as an image sharpness measure via a Laplacian mixture model
(LMM). Li and Wang (2008) introduced a fusion method by com-
bining wavelet and curvelet transform. They have reported that
the combination yielded better fusion results than using the indi-
vidual transform alone. The transform-based fusion methods have
demonstrated many advantages, including improved contrast, bet-
ter signal-to-noise ratio, and increased fusion quality (Li andWang,
2008). However, they are usually complicated and time-consuming
to implement (Wang et al., 2010).

In this paper, we propose a novel image fusion scheme which is
truly different from the above approaches. Our method utilizes a
newly introduced technique referred to as robust principal compo-
nent analysis (RPCA), inwhich the datamatrix is a superposition of a
low-rank component and a sparse component (Candès et al., 2011).
In theory, under certain assumptions, it is feasible to recover both
low-rank and sparse components exactly by solving the principal
component pursuit (Lin et al., 2009). There are many important
applications can be naturallymodeled using thismethodology, such
as video surveillance (Candès et al., 2011), face reconstruction (Tor-
re and Black, 2001), bioinformatics (Wan et al., 2011 ), and web
search (Candès et al., 2011). In (Torre and Black, 2003), the robust
principal component analysis has been proven to be an effective
way to construct low-dimensional linear-subspace representations
from high dimensional data such as images. The objective of the
work is to investigate its potential application in the multifocus im-
age fusion. We establish a multifocus image fusion framework
based on the discriminative sparse features that are computed from
the sparse matrix. The problem of fusing multifocus images is con-
verted to the problem of selecting the most salient sparse features
from the source images to form a composite feature space. The
blocking artifacts are eliminated by using a sliding window tech-
nique to smooth the transitions between the image blocks. The
sparse matrix is computed through an augmented Lagrange multi-
plier (ALM) method (Lin et al., 2009), a fast version of implementa-
tion for recovering low-rank matrices. Being implemented in this
fashion, the new methodology is not only robust to noise interfer-
ence by choosing the most significant sparse features, but also flex-
ible to integrate different fusion strategies in the sparse domain.

The paper is organized as follows. Section 2 provides a problem
statement including a generic multi-focus image fusion method
and the RPCA-based fusion scheme. The detailed methodology
based on the RPCA model is presented in Section 3. Experimental
results for comparing the new image fusion method to three exist-
ing conventional approaches are demonstrated in Section 4. Final-
ly, conclusions are given in Section 5.

2. RPCA-based fusion method

We first give a brief description regarding the formulations of a
generic multi-focus image fusion method and the RPCA-based
fusion scheme in this section.

2.1. Generic multifocus image fusion

Multi-focus image fusion involves combining a set of images
that are taken from a same scene but with different focuses for cre-
ating a single sharp image. Assume that two input images are
given, where image IA 2 RH!W (H !W are the dimensions of the
image) has focus on one object or region, and image IB 2 RH!W fo-
cuses on another object or region. The resultant fused image FAB is
generated by

FAB ¼ uðsðIAÞ; sðIBÞÞ ð1Þ

where s denotes the different domains, such as spatial or multires-
olution domain, in which image fusion will perform, andu is a deci-
sion method or fusion criterion to identify focused regions within
each source image and eventually combine these objects or regions
in focus into an integrated image FAB.

2.2. The RPCA-based fusion scheme

In general, defocused objects or regions in the image appear
very blur while objects located within the focus range are clearly
captured. Therefore, the problem of fusing multifocus images can
be treated as separating clear parts from blur parts of the images.
To solve the problem, one straightforward method is to segment
the source images into various regions and a region-based fusion
rule is adopted to distinguish the sharp regions from the blurry
regions, such as Li and Yang’s method (Li and Wang, 2008). How-
ever, the fusion performance can be highly affected by the accuracy
of the segmentation method used. A recently emerged RPCA tech-
nique tends to decompose the input data matrix into a low-rank
principal matrix and a sparse matrix (Candès et al., 2011). The
sparse matrix represents dissimilar information from the principal
components which can be useful to build a robust fusion scheme to
accurately discriminate the focused regions from the defocused
regions. Hence, the salient information from the source images
can be described by the extracted features from the sparse matrix.

Assume we have an input data matrix D 2 RM!N (M and N are
matrix dimensions) that can be decomposed as:

D ¼ Aþ E; rankðAÞ & minðM;NÞ ð2Þ

where A is a principal matrix known to be low rank, and E is a sparse
matrix. Although under general conditions this problem is intracta-
ble to solve, recent studies (Wright et al., 2009) have discovered
that the principal component pursuit, a convex program, can effec-
tively solve this problem under broad conditions. The sparse matrix
E can be computed by solving the following convex optimization
problem:

min
A;E

kAk' þ kkEk1 s:t: Aþ E ¼ D ð3Þ

where k ( k' represents the nuclear norm of a matrix, k ( k1 is the l1
norm denoting the sum of the absolute values of matrix entries,
and k > 0 is a parameter for weighting the contribution of the
sparse matrix in the optimization process. In the presented fusion
framework, the data matrix D with M ! N dimensions contains an
M ! 1 (m ¼ H 'W) matrix of N(N P 2) source images after vector-
ization. For a fast implementation via an augmented Lagrange
multiplier method (Lin et al., 2009), k is set as 1=

ffiffiffiffiffi
M

p
. Fig. 3(c-d)

and Fig. 4(c-d) show two examples of constructed images obtained
from the sparse matrices after performing the RPCA decomposition
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on the source images. The sparse features FA and FB are computed
from the sparse images SA and SB, respectively. The fusion image
FAB is obtained by combining the salient sparse features via:

FAB ¼ uð/ðFAÞ;/ðFBÞÞ ð4Þ

where / is a feature selection function defined by a saliency mea-
sure. The detailed implementation of the developed fusion scheme
is described in the following section.

3. Methodology

A schematic diagram of the RPCA-based image fusion algorithm
is illustrated in Fig. 1. For a simple case, we only consider the prob-
lem of fusing two source images. However, the developed fusion
method can be extended straightforwardly to handle more than
two images by constructing the data matrix Dwith multiple source
images after vectorization as described in Section 2.2. In addition,
we assume the source images are pre-registered. Therefore, image
registration is not included in the entire framework. The algorithm
consists of the following 5 steps:

Step 1: Transform the 2-dimensional source images
fIA; IBg; IA; IB 2 RH!W to the column vectors VA and VB,
respectively. VA and VB are combined together to formu-
late a data matrix D. For two grayscale source images, D
is given by:

D ¼ ½VA; VB*

where D 2 RM!2 (M ¼ H !W) is the input matrix for the
RPCA model.
As mentioned in Section 2.2, the data matrix D is formulated
as a combination of source images after vectorization.
Therefore, a color image can be processed as three individ-
ual source images to be integrated in a single matrix. For
two color images, the data matrix D is defined as:

D ¼ ½Vc
A; Vc

B*; c 2 fR band;G band; B bandg

where c denotes the index of the image color band.

Step 2: Perform the RPCA decomposition on D to obtain a principal
matrix A 2 RM!2 and a sparse matrix E 2 RM!2. The sparse
matrix E is computed by a fast version of the ALM method
Lin et al., 2009, which has been reported to yield similar
results with much less computational complexity. Convert
each column of matrix E into an H !W matrix to obtain
two matrices EA and EB (EA; EB 2 RH!W ) corresponding to
the source images IA and IB, respectively.

Step 3: Divide the matrices EA and EB into K small blocks. For each
pair of corresponding blocks, the standard deviations
SDAðkÞ and SDBðkÞ; k ¼ 1 . . .K , are calculated. The standard
deviation can be used to characterize the local variations
within the block. Large values of standard deviation repre-
sent sharp regions in good focus, while small values repre-
sent blurry regions. Thus, the block with a larger standard
deviation is chosen to construct the fused image FAB. How-
ever, this will lead to non-smooth transitions between
blocks. In order to reduce the blocking artifacts, a sliding
window technique is applied to the matrices EA and EB.
Let nAði; jÞ and nBði; jÞ store the frequency of pixel location
ði; jÞ being selected when a small window is moved from
previous position to the current position on EA and EB. If
a pixel location ði; jÞ in EA has a higher standard deviation
when the sliding window covers this position, the corre-
sponding nAði; jÞ is added one. The above process is illus-
trated in Fig. 2. The same rule is also applied to EB and
nBði; jÞ. The sliding window technique allows the pixels
that are more likely to belong to the sharp regions are
selected in the following step.

Step 4: For a simple case where there are only two input images, a
decision mapW of the same size of the input images is cre-
ated to record the feature comparison results according to
a selection rule:

Wði; jÞ ¼
1 nAði; jÞ > nBði; jÞ
+1 nAði; jÞ < nBði; jÞ
0 nAði; jÞ ¼ nBði; jÞ

8
><

>:
ð5Þ

Step 5: A consistency verification process Li et al., 1995 is subse-
quently applied to refine the decision map by using a
majority filter, where a pixel is more likely to belong to
the label which many of its neighbors also belong. A
3! 3 majority filter Li et al., 2001; Li et al., 2002 is per-
formed on the decision map W to obtain a refined decision
map Wr . Using a small size kernel of majority filter allows
to increase the accuracy of decision by ensuring that a

Fig. 1. The schematic diagram of the presented fusion algorithm.

Fig. 2. The illustration of the sliding window technique. (a) Sparse matrices [EA ; EB]. (b) Frequency matrix nA . Each cell represents the location of image pixel. The red and
green rectangles show the sliding window that moves from previous position to the current position. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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fused pixel does not come from a different source image
from most of its neighboring pixels, meanwhile avoids
over-smoothing the decision map Bovik, 2005. Thus, the
composite image FAB is finally obtained based on Wr as:

FABði; jÞ ¼
IAði; jÞ Wrði; jÞ ¼ 1
IBði; jÞ Wrði; jÞ ¼ +1
ðIAði; jÞ þ IBði; jÞÞ=2 Wrði; jÞ ¼ 0

8
><

>:
ð6Þ

In order to validate the performance of the RPCA-based fusion
method, we choose a simple and widely used maximum selection
(MS) fusion scheme (Wan and Qin, 2011) to fuse the input images
in the sparse feature space. Moreover, only one feature of standard
deviation is computed on the sparse matrix. The presented frame-
work has the potential to be adopted for eventual use with different
fusion rules and multiple features, such as image gradient (De and
Chanda, 2006), Gabor filters (Redondo et al., 2009), first-order and
second-order statistical features (Li et al., 2012).

4. Experimental studies

The RPCA-based fusion method has been evaluated on various
pairs of grayscale and color images, which are publicly available
online (Image Fusion Online Resource for Research, 2009). The
developed approach has one tunable parameter of the block size

S. In the experiments, S is assigned as 35! 35 pixels for grayscale
images and 38! 38 for color images, respectively.

The following three methods are used for comparison studies in
the experiments. (1) A simple discrete wavelet transform (DWT)
based method that utilizes the maximum selection rule on the
high-pass coefficients and mean operation on the low-pass coeffi-
cients (Nikolov et al., 2001). The fused image is obtained via an in-
verse DWT. (2) Tian and Chen (2012) employed the spreading of
the wavelet coefficients distribution as an image sharpness mea-
sure using a Laplacian mixture model. (3) Li et al. (2001) devised
a multifocus image fusion approach using the spatial frequency
as a selection criterion. The DWT- and LMM-based methods are
developed in the multiresolution domain while the SF based ap-
proach is performed in the spatial domain. For both the DWT-
and LMM-based fusion methods, we have used the authors’ origi-
nal implementations. Due to the lack of original source code, we
implemented the SF-based method based on Li et al. (2001). For
the sake of fair comparison, we used the parameters that were re-
ported by the authors to yield the best fusion results.

Three image quality evaluation criteria are used to provide
objective performance comparison in our work. These three met-
rics are: (i) mutual information (MI) (MacKay and Theory, 2003),
which determines the similarity between two images, (ii) Petro-
vic’s metric QAB=F (Xydeas and Petrovic, 2000), which measures
the edge as well as the orientation information in both source
images (denoted as A and B) and fused image (denoted as F), (iii)

Fig. 3. Fusion Results using the ‘‘Clock’’ grayscale images. (a-b) The original images. (c-d) The images constructed from the sparse matrix after RPCA decomposition. (e) DWT-
based method. (f) LMM-based method Tian and Chen (2012). (g) SF-based method Li et al. (2001). (h) RPCA-based method.
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structural similarity index (SSIM) (Wang et al., 2004), which quan-
tifies salient information that has been transferred into the fused
image, where larger metric values imply better image quality. In
order to ensure an objective, unbiased quality assessment, the
above measures are used under a third-party implementation, i.e.
the MeTriX MuX Visual Quality Assessment Package (Gaubatz,
2011), and Image Fusion Toolkit for Matlab (Image Fusion Online
Resource for Research, 2009). Further, the computational complex-
ity of the test methods is evaluated using the Matlab code on an
Intel Core2 2.4 GHz machines with a 4 GB RAM.

4.1. Comparison results on grayscale images

Two examples are shown in Fig. 3 and Fig. 4 to fuse two gray-
scale images focusing on left or right side. The original images with
size of 512! 512 pixels are displayed in Fig. 4 and Fig. 4(a-b),
respectively. The sparse images associated with two original
images are illustrated in Fig. 4(a-b), and Fig. 4(c-d). The figures
show that the sparse matrix contains salient information that
reflects the edges of focused objects while suppresses defocused
objects. Thus, the sparse features computed based on the sparse
matrix represent important information of objects or regions in
the scene that are in good focus.

By inspecting the fusion results, it can be seen that the fusion
results obtained from DWT-based method are subject to a severe
ringing effect making the entire image blur. The LMM-based meth-
od provides a sharp image but exhibits artifacts around edges. For

example, in Fig. 3(f), noisy boundaries can be observed on both big
and small clocks. The similar artifacts are also shown in Fig. 4(f).
The SF-based method yields comparable fused images but suffers
blocking artifacts. Fig. 3(g) shows vague edges appearing on the
top and bottom of the big clock. The ‘‘Pepsi’’ image in Fig. 4(g)
exhibits blurry edges on the table due to an incorrect selection of
blocks. Our algorithm achieves superior fusion results by contain-
ing all the sharp contents from the source images without intro-
ducing artifacts.

The quantitative results in three quality measures are shown in
Table 1. Our method gains the highest MI and QAB=F values
compared to other methods, except for the ‘‘Pepsi’’ images when
the SF-based method is rated highest using the SSIM measure. In
fact, due to the actual definitions of these three metrics, a differ-
ence of 0:01 is significant for quality improvement. The running
times are shown in Table 1, where one can see that the presented
approach yields higher computational cost than the other two
methods, due to the matrix decomposition method that requires
longer computational time.

4.2. Comparison results on color images

As formulated in Section 3, the color images can be vectorised
into three long independent one-dimensional vectors and assem-
bled in a single data matrix. The sparse images can be recon-
structed based on these three color channels after applying the
RPCA decomposition. Fig. 5 and Fig. 6 demonstrate two examples

Fig. 4. Fusion Results using the ‘‘Pepsi’’ grayscale images. (a and b) The original images. (c and d) The images constructed from the sparse matrix after RPCA decomposition.
(e) DWT-based method. (f) LMM-based method Tian and Chen (2012). (g) SF-based method Li et al. (2001). (h) RPCA-based method.
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to combine color images. The input images are resized to be power
of 2 to meet the requirement of the LMM-based method.

The first example contains two individuals who were standing
about 30 feet apart with extended illumination as shown in
Fig. 5(a-b). As the figures show, the DWT-based method suffers a
ringing effect that deteriorates the fusion quality. The fused image
obtained from the LMM-based method shows clear artifacts
around figures and ceiling lights. The SF-based method performs
well but exhibits blocking artifacts on the right corner of the fused
image and human hair shown on Fig. 5(g). Our method shown in
Fig. 5(h) yields the best quality image with respect to visual
perception. For example, the ceiling lights on both right and left

corners appear sharp, and lines on the top are well connected. Fur-
ther, the boundaries of both figures are distinct and smooth.

As second example, the images are focused on right-hand or
left-hand side for two books. The text showing on the book
becomes blurry because of defocusation. The fusion results are
displayed in Fig. 6. Similarly, the DWT-based method exhibits
undesirable ringing artifacts round letters that degrade image visu-
ally. The SF-based method demonstrates a blurry edge between the
two books. The LMM-based method yields a high quality fused im-
age. Our method achieves a consistently good fusion result.

Table 2 lists the quantitative results by using three measures of
MI, QAB=F , and SSIM, which demonstrate that our fusion method
achieves best fusion results among all four approaches. We have
found that all three metrics generally correlate well with the
results of visual analysis. However, it should be noted that edge
or structure based metrics (e.g. QAB=F and SSIM) fuse images
containing significant artifacts such as ringing introduced by the
transform can sometimes be inadvertently rated high by the met-
rics but look inferior perceptually.

The computational times are shown in Table 2. Again, our meth-
od needs longer running time than the other two methods. This
drawback of high computation complexity lies in two aspects: (i)
The RPCA requires to compute the singular value decomposition
(SVD) of data matrix D. The SVD accounts for the majority of the
computational load although only partial singular values are calcu-
lated in the implementation; (ii) The sliding window technique
searches the entire image to compute the frequency matrix, which

Table 1
The objective evaluation and run-time performance for the grayscale images.

Image Measure Method

DWT LMM SF RPCA

Clock MI 7.47 8.07 7.99 8.57
QAB=F 0.59 0.78 0.77 0.80
SSIM 0.86 0.91 0.89 0.91
run-time (s) 0.94 22.64 2.50 20.37

Pepsi MI 6.81 6.76 7.95 8.65
QAB=F 0.53 0.71 0.75 0.76
SSIM 0.84 0.83 0.86 0.85
run-time (s) 1.04 31.32 3.06 26.33

Fig. 5. Fusion results using the ‘‘Human’’ color images. (a and b) The original images. (c and d) The images constructed from the sparse matrix after RPCA decomposition. (e)
DWT-based method. (f) LMM-based method Tian and Chen (2012). (g) SF-based method Li et al. (2001). (h) RPCA-based method.

1006 T. Wan et al. / Pattern Recognition Letters 34 (2013) 1001–1008



Author's personal copy

is inefficiently coded using a loop structure in Matlab. For the SVD,
accurately predicting the dimension of principal singular space
(DPSS) allows a smaller number of singular values to be computed,
which could reduce computational cost. Currently, the prediction
of DPSS assumes that the rank of A is to be monotonically increas-
ing and becomes stable at the true rank. In fact, the ranks of A are
often oscillating, thus resulting in an inefficient partial SVD (Lin
et al., 2009). The accuracy of prediction could be improved via a
more intelligent scheme by considering the ratio between succes-
sive singular values and the corresponding iterative index. For
implementing the sliding window technique, the source image
could be divided into several non-overlapped subimages. The

sliding window is applied to each subimage and processed using
parallel computing in Matlab to accelerate the computation. We
believe these improvements could greatly reduce the computa-
tional complexity of our method and speed up the running time.

5. Concluding remarks and future work

In this paper, we have presented a novel image fusion scheme
to effectively combine multifocus images into a single all-in-focus
image. The RPCA technique is used to decompose the source
images into principal and sparse matrices. The important features
computed from the sparse matrix are able to represent the salient
information from the source images that are acquired from a same
scene with different focus points. The experiments were conducted
on various pairs of grayscale and color images. The qualitative and
quantitative evaluations have demonstrated that the presented
RPCA-based fusion scheme achieves consistently superior fusion
results compared to a number of state-of-the-art fusion methods
in both spatial and wavelet domains. Further, being built in the
RPCA decomposition domain, the new fusion scheme is flexible
to adopt different types of features that are suitable for a variety
of fusion tasks, such as combination of remote sensing images.

Future work will involve optimizing the current fusion frame-
work to reduce the computational complexity and extending the
developed method to be applied to noisy images. A recent study
(Zhou and Tao, 2011) has showed that the decomposition and

Fig. 6. Fusion results using the ‘‘Book’’ color images. (a and b) The original images. (c and d) The images constructed from the sparse matrix after RPCA decomposition. (e)
DWT-based method. (f) LMM-based method Tian and Chen (2012). (g) SF-based method Li et al. (2001). (h) RPCA-based method.

Table 2
The objective evaluation and run-time performance for the color images.

Image Measure Method

DWT LMM SF RPCA

Human MI 6.09 8.48 8.84 9.29
QAB=F 0.57 0.77 0.73 0.81
SSIM 0.88 0.89 0.86 0.90
run-time (s) 1.67 62.49 4.72 45.26

Book MI 7.16 8.48 8.98 9.30
QAB=F 0.67 0.77 0.76 0.77
SSIM 0.87 0.89 0.88 0.90
run-time (s) 2.87 65.32 4.06 40.33

T. Wan et al. / Pattern Recognition Letters 34 (2013) 1001–1008 1007
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matrix completion tasks can be efficiently solved under noisy case,
which is useful for developing an image fusion scheme to handle
images that are contaminated by noise. The new method can be
applicable to fusing medical images or remote sensing images con-
taining noise that originates in the input device sensor and cir-
cuitry, or in the unavoidable shot noise of an ideal photo detector.
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