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ABSTRACT

Multifocus image fusion is an important research topic in
the computer vision and image processing field. The optical
lenses that are commonly used by imaging devices, such as
auto-focus cameras, have a limiting focus range. Thus, only
objects within the range of distances from the devices can
be captured and recorded sharply while out-of-range objects
become blur. In this paper, we present a novel image fusion
scheme for combining two or multiple images with different
focus points to generate an all-in-focus image. We formulate
the problem of fusing multifocus images as choosing most
significant features from a sparse matrix produced by a newly
developed robust principal component analysis (RPCA) de-
composition method to form a composite feature space. Thus,
the salient features presented in sharp regions can be captured
and integrated into a single representation. The sparse matrix
is first divided into small blocks, and standard deviation is
then calculated on each block as a selection criterion. To re-
duce blocking artifacts, a sliding window technique is utilized
to smooth the transitions between blocks. The proposed fu-
sion scheme has been demonstrated to successfully improve
fusion quality in terms of visual and quantitative evaluations.
The method is also able to effectively handle both grayscale
and color images.

Index Terms— Multifocus image fusion, robust principal
component analysis, sparse matrix.

1. INTRODUCTION

Due to the fact that commonly used optical lenses suffer from
a problem of limited depth of field, images being captured
are not in focus everywhere. Only objects at one particular
depth will be truly in focus while out-of-focus objects remain
blur, which is usually undesirable for human visual perception
and often cause difficulties in image-processing tasks, such
as segmentation, feature extraction, and object recognition.
Image fusion provides a promising way to solve this problem
by combining multiple images taken with diverse focuses into
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a single image in which all the objects within the image are in
focus [1, 2].

Multifocus image fusion has been widely used in various
fields, such as computer vision, remote sensing, digital imag-
ing, and microscopic imaging. Currently, the exiting methods
can be mainly categorized into two groups based on the differ-
ent domains in which the fusion task is performed. Spatial do-
main based image fusion methods apply fusion rules directly
to image pixels or image regions rather than transformed co-
efficients. For instance, Li et al. [3] devised a multifocus
image fusion scheme by decomposing the source images into
blocks and combining them based on the spatial frequency
(SF). In the past few years, some more sophisticated fusion
rules were proposed in [2]. These pixel or region based meth-
ods are simple to implement and fast to compute. However,
they are usually subject to noise interference or blocking arti-
facts since the selection criteria used are computed based on
single or neighboring pixels. Multiscale transforms have be-
come popular in the image fusion field [4, 5]. These methods
first decompose the source images into multiscale representa-
tions using a certain transformation. Some selection rules are
then applied to the transformed images to form an integrated
fusion map. Finally, a fused image is reconstructed via an in-
verse transformation. The transform domain based methods
have showed many advantages, including improved contrast,
better signal-to-noise ratio, and increased fusion quality.

Most recently, Yang and Li [6, 7] proposed a sparse rep-
resentation theory based image fusion method, in which the
source image can be described by a sparse linear combination
of atoms from a dictionary. A set of sparsity coefficients was
obtained via a simultaneous orthogonal matching pursuit.
However, the redundant dictionary construction and sparse
representation optimization are computationally expensive.
Therefore, the method requires a longer computation time
compared to spatial and transform domain based approaches.

In this paper, we propose a novel image fusion scheme
which is truly different from the above approaches. Our
method utilizes a newly introduced technique referred to as
robust principal component analysis (RPCA), in which the
data matrix is a superposition of a low-rank component and a
sparse component [8]. In theory, under certain assumptions,
it is feasible to recover both low-rank and sparse components
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exactly by solving the principal component pursuit. There
are many important applications can be naturally modeled
using this methodology, such as video surveillance, face
recognition, bioinformatics, and web search [8]. We establish
a multifocus image fusion framework based on the sparse
features computed from the sparse matrix. The problem of
fusing multifocus images is converted to the problem of se-
lecting the most essential sparse features from the source
images to form a composite feature space. The blocking
effect is eliminated via a sliding window technique. The
fused image is constructed through a decision scheme based
on the extracted sparse features. Being implemented in this
fashion, the proposed methodology is not only robust to noise
interference by choosing the most significant sparse features,
but also flexible to adopt different fusion rules in the sparse
domain.

The paper is organized as follows. Section 2 describes the
problem setting under the RPCA framework. The detailed
methodology based on the RPCA model is presented in Sec-
tion 3. The experimental results are demonstrated in Section
4. Section 5 concludes the paper.

2. PROBLEM SETTING

One core task of multifocus image fusion is to identify fo-
cused regions within each source image and eventually com-
bine these objects in focus into a single image. In general, de-
focused objects appear very blur while objects located within
the focus range are clearly captured. Therefore, the prob-
lem of fusing multifocus images can be treated as separating
clear parts from blur parts of the images. A recently emerged
RPCA technique tends to decompose the input data matrix
into a low-rank principal matrix and a sparse matrix [8]. The
sparse matrix represents dissimilar information from the prin-
cipal components which can be useful to solve our problem.
Assume we have an input data matrix D ∈ RM×N (M and N
are matrix dimensions) that can be decomposed as:

D = A + E (1)

where A is a principal matrix known to be low rank, and E is
a sparse matrix. Although under general conditions this prob-
lem is intractable to solve, recent studies [8] have discovered
that the principal component pursuit, a convex program, is
able to effectively solve this problem under broad conditions.
The sparse matrix E can be computed by solving the follow-
ing convex optimization problem:

min
A,E

‖A‖∗ + λ‖E‖1 s.t. A + E = D (2)

where ‖ · ‖∗ represents the nuclear norm of a matrix, ‖ · ‖1 is
the l1 norm denoting the sum of the absolute values of matrix
entries, and λ > 0 is a parameter for weighting the contri-
bution of the sparse matrix in the optimization process. In
our approach, the data matrix D with M × N dimensions

Fig. 1. The schematic diagram of the proposed fusion algo-
rithm.

contains an M×1 matrix of N source images after vectoriza-
tion. Thus, a color image can be handled as three individual
images to form a single matrix. For a fast implementation,
λ is set as 1/

√
M . Fig. 2(c-d) show two examples of con-

structed images obtained from the sparse matrices after per-
forming the RPCA decomposition on the source images. The
figures clearly show that the sparse matrix contains salient in-
formation which reflects the edges of objects or regions in
good focus. The detailed implementation is described in the
following section.

3. METHODOLOGY

A schematic diagram of the proposed fusion method is shown
in Fig. 1. For a simple case, we only consider the problem of
fusing two source images, though it can be extended straight-
forwardly to process more than two images. In addition, we
assume the source images are pre-registered. Therefore, im-
age registration is not included in the entire framework. The
algorithm consists of 5 steps:

Step 1: Transform the 2-dimensional source images
A,B ∈ RH×W to the column vectors VA and VB , respec-
tively. VA and VB are combined together to formulate a data
matrix D:

D = [VA VB ] (3)

where D is the input matrix for the RPCA model.
Step 2: Perform the RPCA decomposition on D to obtain

a principal matrix A and a sparse matrix E. Reshape each
column of matrix E to have two H × W matrices EA and
EB .

Step 3: Divide the matrices EA and EB into K small
blocks. For each pair of corresponding blocks, the standard
deviations SDA(k) and SDB(k), k = 1, ..., K, are calcu-
lated. In a general rule, the block with a bigger standard de-
viation is chosen to construct the fused image F . However,
This will lead to non-smooth transitions between blocks. In
order to eliminate blocking artifacts, a sliding window tech-
nique is applied to the matrices EA and EB . Let nA(i, j) and
nB(i, j) store the frequency of pixel location (i, j) being se-
lected when a small window is moved from previous position
to the current position on EA and EB . If a pixel location (i, j)
in EA has a higher standard deviation when the sliding win-
dow covers this position, the corresponding nA(i, j) is added
one. This is also applied to EB and nB(i, j).
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Step 4: For a simple case where there are only two input
images A and B, the decision map W can be created by:

W (i, j) =





1 nA(i, j) > nB(i, j)
−1 nA(i, j) < nB(i, j)
0 nA(i, j) = nB(i, j)

(4)

Step 5: A 3 × 3 majority filter is applied to W to correct
the wrong selected pixels due to the image noise. A fused
image F is finally obtained after majority filtering.

F (i, j) =





A(i, j) W (i, j) = 1
B(i, j) W (i, j) = −1
(A(i, j) + B(i, j))/2 W (i, j) = 0

(5)

4. RESULTS AND DISCUSSION

The fusion method has been tested on various pairs of
grayscale and color images, which are publicly available
online [9]. The proposed approach has one tunable parameter
of the block size S. In the experiments, S is set as 35 × 35
pixels for grayscale and 38 × 38 pixels for color images, re-
spectively. Three reference methods are used for comparison.
A simple discrete wavelet transform (DWT) based method
utilizes a maximum selection rule to the high-pass coeffi-
cients and a mean operation to the low-pass coefficients. Tian
and Chen [10] employed the spreading of the wavelet coef-
ficients distribution as an image sharpness measure using a
Laplacian mixture model (LMM). In addition, Li et al. [3]
devised a multifocus image fusion method which adopted the
spatial frequency as a selection criterion. For the sake of fair
comparison, we use all the parameters that were reported by
the authors to yield the best fusion results.

Fig. 2 shows the fusion results for two grayscale images
focusing on left or right side. The original images with size
of 512× 512 pixels are displayed in Fig. 2(a-b), respectively.
By inspecting the figures, it can be seen that the result ob-
tained from DWT subjects to a severe ringing effect making
the entire image blur. The LMM based method provides a
sharp image but exhibits artifacts around edges of both clocks
as indicated by the yellow rectangles. Fig. 2(g) yields a com-
parable result but still suffers a blocking effect. For example,
vague edges can be observed on the top and bottom of the
right clock. Our proposed algorithm achieves a superior result
by containing all the sharp contents from the source images
without introducing artifacts.

The second example combines two color images. Two
individuals are standing about 30 feet apart with extended
illumination as shown in Fig. 3(a-b). Both images are re-
sized to be power of 2 to meet the requirement of the LMM
method. Similarly, the DWT based method suffers a ringing
effect that deteriorates the fusion quality. The fused image
obtained from the LMM based method shows clear artifacts

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 2. Fusion Results using “Clock” grayscale images. (a-
b) Original images. (c-d) Images constructed from the sparse
matrix after RPCA decomposition. (e) DWT. (f) LMM [10].
(g) SF [3]. (h) RPCA. The yellow rectangles indicate the ar-
tifacts.

around figures and ceiling lights. The SF based method per-
forms well but observes blocking artifacts on the right corner
of the fused image (indicated by the yellow rectangle shown
on Fig. 3(e)). Compared to these three methods, our result
in Fig. 3(f) yields the best quality image in terms of visual
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perception. For example, the lights on both right and left cor-
ners appear sharp, and lines on the ceiling are well connected.
Further, the boundaries of both figures are smooth and clear.

(a) (b)

(c) (d)

(e) (f)
Fig. 3. Fusion results using “Human” color images. (a-b)
Original images. (c) DWT. (d) LMM [10]. (e) SF [3]. (f)
RPCA. The yellow rectangles indicate the artifacts.

Moreover, three image quality criteria are performed to
provide objective evaluations. These three metrics are: (i)
mutual information (MI) [11], (ii) Petrovic’s metric QAB/F

[12] which measures the edge as well as the orientation infor-
mation in both source images (denoted as A and B) and fused
image (denoted as F ), (iii) structural similarity index (SSIM)
[13], which quantifies salient information that has been trans-
ferred into the fused image, where larger metric values im-
ply better image quality. The quantitative results are tabu-
lated in Table 1. Our method gains the highest MI, QAB/F ,
and SSIM values compared to other methods. In fact, due to
the actual definitions of these three metrics, a difference of
0.01 is significant for the quality improvement. The compu-
tational complexity of these four methods is evaluated using
the Matlab code on an Intel Core2 2.4GHz machines with a

4GB RAM. The running times are presented in Table 1, where
one can see that the proposed approach yields higher compu-
tational cost than the other two methods, due to the matrix
decomposition method requires a longer computational time.

Table 1. The objective evaluation and run-time performance
Image Method DWT LMM SF PRCA

Clock
MI 7.47 8.07 7.99 8.57

QAB/F 0.59 0.78 0.77 0.80
SSIM 0.86 0.91 0.89 0.91

run-time(s) 0.94 22.64 2.50 20.37

Human
MI 6.09 8.48 8.84 9.29

QAB/F 0.57 0.77 0.73 0.81
SSIM 0.88 0.89 0.86 0.90

run-time(s) 1.67 62.49 4.72 45.26

5. CONCLUDING REMARKS

A novel image fusion scheme has been presented to combine
multiple images acquired with different focus points. The
RPCA technique is used to decompose the source images into
principal and sparse matrices. The salient information from
multifocus images can be discovered via sparse features com-
puted based on the sparse matrix. The experiments showed
that the RPCA-based approach yielded consistently superior
fusion results compared to a number of state-of-the-art fusion
methods in terms of both subjective and objective evaluations.
Future work will involve extending the developed method to
be applied to the noisy images.
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