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Abstract

In this chapter, the essentials of genetic algorithm (GA) following the footsteps
of Turing are introduced. We introduce the connection between Turing’s early
ideas of organized machines and modern evolutionary computation. We mainly
discuss the GA applications to adaptive complex system modeling. We study the
agent-based market where collective behaviors are regarded as aggregations of
individual behaviors. A complex collective behavior can be decomposed into ag-
gregations of several groups agents following different game theoretic strategies.
Complexity emerges from the collaboration and competition of these agents.
The parameters governing agent behaviors can be optimized by GA to predict
future collective behaviors based on history data. GA can also be used in de-
signing market mechanisms by optimizing agent behavior parameters to obtain
the most efficient market. Experimental results show the effectiveness of both
models. Using evolutionary models may help us to gain some more insights in
understanding the complex adaptive systems.

1 Introduction

Alan Turing (1912-1954) is a legend. He is a profound mathematician, logician
and esteemed as the father of computer science. He is also a patriotic wartime
codebreaker and, tragically, a victim of prejudice - being prosecuted by the
police because of his “illegal” homosexuality, that directly leads his suicide at
the age of 41. This has been remembered by us and also recorded in his memorial
statue plaque, situated in the Sackville Park in Manchester, England [42]. His
legendary contributions founded the modern computing and the indirectly create
the machine I am using to type and compile this chapter - a MacBook with 2.4
GHz Intel Core 2 Duo and 3 GB 1067 MHz DDR3. These terms can remind
us the path of computing revolutions and those ingenious minds following his
footsteps.

Like other geniuses in history, his contributions are not limited to one or two
fields. He conceived of the modern computer by introducing Turing machines
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in 1935, pioneered the field later called Artificial Intelligence (A.I.) by propos-
ing the famous Turing test [38] as a way of determining whether a machine can
think 1. During World War II, Turing’s work in code-breaking was regarded by
historians short-ended the war in two years. His 1950 paper Computing Machin-
ery and Intelligence [38] gave a fresh approach to the traditional mind-body
problem, by relating it to the mathematical concept of computability he himself
had introduced in his paper On computable numbers, with an application to the
Entscheidungsproblem. It has a deep influence not only in mathematics and com-
puter science, but also becomes one of the most frequently cited work in modern
philosophical literature [44]. In this paper, Turing considers the question “Can
machines think?” Since both the terms “think” and “machine” can’t be defined
in clear and satisfying way, Turing suggests we “replace the question by another,
which is closely related to it and is expressed in relatively unambiguous words.”
Under this scenario, a hypothetical computing prototype called Turing machine
is proposed.

A Turing machine is a device that manipulates symbols on a strip of infinite
tape according to a table of rules. In modern terms, the table of behavior of a
Turing machine is equivalent to a computer program. It goes beyond Charles
Babbage’s unprogrammable mechanical computer [45]. The Turing machine is
not intended as a practical computing technology, but rather as a conceptual de-
vice representing a computing machine. Despite its simplicity, a Turing machine
can be adapted to simulate the logic of any computer algorithm, and is particu-
larly useful in explaining the functions of a CPU inside a modern computer. It
helps computer scientists understand the limits of mechanical computation [44].
His work on Turing machines and Computing Machinery and Intelligence can
be regarded as the foundation of computer science and of the artificial intelli-
gence. But It is not widely realized that Turing was probably the first person
to consider to construct systems which could modify their own programs. By
the expression of ‘genetical or evolutionary search’, he also anticipated the ‘ge-
netic algorithms’ which since the late 1980s have been developed as a less closely
structured approach to self-modifying programs [8].

In this chapter, we will revisit Turing’s idea on unorganized machines and
how it will contribute to the current connectionism. Following his footsteps,
we introduce the modern genetic algorithms and their applications in studying
collective behaviors in complex adaptive systems. During the last years of his
life, Turing also pioneered the field of artificial life. He was trying to simulate a
chemical mechanism by which the genes of a fertilized egg cell may determine
the anatomical structure of the resulting animal or plant [7]. In this chapter,
we are studying a similar but much simpler process of how observable collective
behaviors are influenced by consisting individual deterministic behaviors. We

1 Whether a machine can think has been a controversial topic. For example, John
Searle proposed a thought experiment called the “Chinese room”, which holds that
a program cannot give a computer a “mind” or “understanding”, regardless of how
intelligently it may make it behave [46].



Evolutionary models for agent-based complex behavior modeling 3

are also hoping to find the answer of how patterns emerge from the complex
adaptive systems like financial markets.

This chapter is structured as follows: Section 2 gives a historical introduction
on Turing’s idea on unorganized machines, which is related to the modern genetic
algorithms. Section 3 gives a general introduction on the genetic algorithms.
Two novel applications of GAs to the complex adaptive systems (agent-based
virtual market models) with detailed empirical evaluation results are introduced
in Section 4 and 5, respectively. At the end, we summarize this field of research
and discuss its research potentials worthing further investigations.

2 Turing’s Unorganized Machines

Throughout his remarkable career in his short life, Turing had no great inter-
est in publicizing his ideas (possibly because of his Bletchley Park2 experience).
Consequently, important aspects of his work have been neglected or forgotten
over the years. In an unpublished report in 1948, he first gave a prophetic man-
ifesto of the field of artificial intelligence. This work is unpublished until 1968,
14 years after Turings death, for which we learn that Turing not only set out
the fundamentals of connectionism but also brilliantly introduced many of the
concepts that were later to become central to AI, these ideas have been redis-
covered or reinvented to develop into the fields of neural networks, evolutionary
computation and artificial life [6–8].

Table 1. The NAND operation given two inputs and one output.

Input 1 Input 2 Output ← (Input 1 NAND Input 2)

0 0 1
0 1 1
1 0 1
1 1 0

2.1 Turing’s Idea of Neural Computation

In this unpublished report, Turing proposed so-called unorganized machines (u-
machines). Two types of u-machines are discussed. The first were A-type ma-
chines, which are essentially randomly connected networks of logic gates. Specifi-
cally, every node (or neuron in Turing’s conceptual cortex model) has two inputs
and any number of outputs with two states representing by 0 or 1. The output

2 Bletchley Park is located in Buckinghamshire, England, currently houses the Na-
tional Museum of Computing. During World War II, Bletchley Park was the site of
the United Kingdom’s main decryption base, where Turing was working in secret
before moving to Hub 8.
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of a neuron is a simple logical function of its two inputs. Every neuron in the
network executes the same logical operation of “not and” (or NAND): the out-
put is 1 if either of the inputs is 0. If both inputs are 1, then the output is 0
(Table 1). Fig. 1 illustrates a network of A-type machines. The state transition
matrix given node assignment at the time T is shown in Table 2.

The second type u-machines were called the B-type machines, which could be
created by taking an A-type machine and replacing every inter-node connection
with a structure called a connection modifier -which itself is made from A-type
nodes. The purpose of the connection modifiers were to allow the B-type machine
to undergo “appropriate interference, mimicking education” in order to organize
the behavior of the network to perform useful work. Turing took his inspiration
from how human cortex works and its self-adaptive ability [9].

Fig. 1. An example of A-type machine with 5 inter-connected nodes. The graph is
modified from [37]. State transition matrix is shown in Table 2.

Table 2. State transition of the network of A-type machines shown in Fig. 1 from time
T to T + 7. For example, N1(T + 1) = N2(T ) NAND N3(T ) = 1 NAND 0 = 1.

Node T T + 1 T + 2 T + 3 T + 4 T + 5 T + 6 T + 7 . . .

N1 1 1 0 0 1 0 1 0 . . .
N2 1 1 1 0 1 0 1 0 . . .
N3 0 1 1 1 1 1 1 1 . . .
N4 0 1 0 1 0 1 0 1 . . .
N5 1 0 1 0 1 0 1 0 . . .
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Actually, Turing theorized that “the cortex of an infant is an unorganized
machine, which can be organized by suitable interfering training.” Initially a
network that is to be trained contains random inter-neural connections, and the
modifiers on these connections are also set randomly. Unwanted connections are
destroyed by switching their attached modifiers to interrupt mode. The output
of the neuron immediately upstream of the modifier no longer finds its way along
the connection to the neuron on the downstream end. Conversely, switching the
setting of the modifier on an initially interrupted connection to the other mode
to create a new connection [6]. From the modern A.I. point of view, Turing’s
unorganized machines were in fact very early examples of randomly-connected,
binary neural networks, and Turing claimed that these were the simplest possible
model of the nervous system.

One thing that makes the field so exciting is the way people studying the
human brain work with people who are trying to build artificial intelligence. On
the one hand, brainlike structures such as artificial neural networks having the
ability to change their responses according to their success or failure (that is,
to “learn”) are surprisingly good at some tasks, ranging from face recognition
to flood prediction. Such learning mechanism of “tuning parameters” or “tuning
structures of networks” brought a revolutionary technology of machine learning,
which has becomes arguably the most successful branch of A.I.

2.2 Turing’s Idea of Genetic Algorithms

Changing the settings of the connection modifiers in a B-type network changes
its topological structure and functions. Turing had realized that the B-type ma-
chines could be very complex when the number of nodes in the network was
large. In any moderately sized network there will be a very large number of
possible patterns of modifier settings, only a tiny fraction of which will be use-
ful. Any attempt to find best setting patterns of the network by exhaustively
searching all possibilities, becomes intractable as the number of nodes increases.
Turing himself mentioned a method which is believed to be the most promising
for solving the B-type training problem; that of a genetic algorithm (GA), or as
Turing called it before the term GA was coined, a genetical search. Based on the
original idea of Turing, Webster and Fleming replicate the network designing by
GAs [40].

To illustrate this idea, we use the following example. The network structure
can be coded into a table of 0s and 1s by considering the input-output relations.
Table 3 shows a 5 × 5 matrix used to represent the network shown in Fig. 1.
Modifier for direct connection between nodes is represented by 1, otherwise, it
is 0. E.g.:

N1 ← Input(N2 = 1, N3 = 1)

indicate that the input nodes for N1 are N2 and N3. Given a network of 5 nodes,
any possbile structure of the network can be uniquely defined by a 5×5 matrix S.
For each predefined S, we have a corresponding state transition matrix given the
initial condition. If we know the state transition matrix A and a set of possible



6 Qin et al.

Table 3. Structure of a network can be coded by 0 and 1 to represent the connections
of nodes. The following table represents the network in Fig. 1.

Input N1 N2 N3 N4 N5

Node

N1 0 1 1 0 0

N2 0 0 1 0 1

N3 0 0 0 1 1

N4 0 0 1 1 0

N5 0 1 0 0 1

structure S = {S1, S2, . . . , SK}. Which is the most likely structure Si ∈ S given
A? Since the number of possible network structure grows exponentially with the
number nodes. How can we adaptively learn such a structure, is the problem we
can solve by genetic algorithms today.

For example, we would create a population of randomly connected B-type
networks and test each in turn to calculate a score based on the given transition
matrix. For each node, if the generated state value is identical to the given train-
ing data, we will add one to the score. The final score for the network would the
sum of scores across the whole networks in T steps. These scores would become
the fitness measures of the individual networks and dictate their number of off-
spring through biased genetic selection. The most fit networks would be dispro-
portionately over-represented in the next generation, while those poorer scoring
networks would be under-represented or drop out of the population altogether.
If this test-and-reproduce cycle is repeated for many generations individual net-
works will become better to fit the training data until eventually a network will
be created which gains a perfect score. This idea of genetic search of Turing is
one of the earliest ideas in the field of evolutionary computation [19].

3 Genetic Algorithms

A genetic algorithm (GA) is a search heuristic that mimics the process of natural
evolution. It belongs to a general field of metaheuristics for designing computa-
tional methods to optimize a problem by iteratively trying to improve a candi-
date solution regard to a given measure of quality [24]. A GA can be used to
generate solutions to optimization problems using techniques inspired by natural
evolution, such as inheritance, crossover and mutation.

3.1 Brief History of Genetic Algorithm

The development of genetic algorithms has its roots in work done in the 1950s by
biologists using computers to simulate natural genetic systems [21]. John Holland
created the genetic algorithm field. In the cybernetics writing of the 1940s and
1950s there are several, usually fairly vague, mentions of the use of artificial
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evolution. In an interview, Holland claimed that he has been focus his attention
on adaptive systems. Fisher’s book On the Genetical Theory of Natural Selection
had a great influence on him as his starting point for the genetic algorithm [19].
He claimed that:

“Computer programming was already second nature to me by that time,
so once I saw his mathematical work it was pretty clear immediately
that it was programmable ... ... I began to think of selection in relation
to solving problems as well as the straight biological side of it. In fact,
by the time I was doing the final writing up of my thesis I had already
gone heavily in the direction of thinking about genetics and adaptive
systems. ”

Holland’s interest was in machine intelligence, and he and his students developed
and applied the capabilities of genetic algorithms to artificial systems. He laid
the groundwork for applications to artificial systems with his publications on
adaptive systems theory [17]. Holland’s systems were self-adaptive in that they
could make adjustments based on their interaction with the environment over
time.

Beginning in the 1960s Holland’s students routinely used selection, crossover,
and mutation in their applications. Several of Holland’s students made significant
contributions to the genetic algorithm field. The term “genetic algorithm” was
used first by Bagley in [2], which utilized genetic algorithms to find parameter
sets in evaluation functions for playing the game of Hexapawn, that is a chess
game played on a 3×3 chessboard in which each player starts with three pawns.
In 1975, K.A. DeJong finished his Ph.D. dissertation under Holland’s supervision
[10]. In his work, a few classical complex function optimization problems were
studied by using GA, in which two import metrics for GAs were devised, one
to measure the convergence of the algorithm, the other to measure the ongoing
performance. David E. Goldberg, another of Hollands students, has concentrated
on engineering applications of genetic algorithms. His volume published in 1989,
Genetic Algorithms in Search, Optimization, and Machine Learning, is one of
the most influential books on genetic algorithms [15]. It has been widely used as
a textbook of GAs across all over the world. A more comprehensive history note
of the genetic algorithm can be found in [21].

3.2 Essentials of Genetic Algorithm

There are a few good textbooks and tutorials for introducing the genetic algo-
rithm [15, 27]. In this chapter, we are not going to talk about the technical details
and the variants of GA. Instead, we give short introduction on the basic ideas of
GA. By solving a problem using a genetic algorithm, you must represent a solu-
tion to your problem as a chromosome (or genome). Each chromosome can be
interpreted into a particular assignment of variables. For example, if the values
for the variable x was a number in range of 0 ∼ 256; then an eight-bit binary
number was thus an obvious way of representing it. In this example, suppose
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the fitness function f(x) of the problem is the sine function, because the nature
of the sine function places the optimal value of x = 128, where f(x) = 1. The
binary representation of 128 is 10000000; the representation of 127 is 01111111.
Thus, the smallest change in fitness value can require a change of every bit in
the representation. Binary encoding of chromosome is the most common type of
coding, mainly because first works in GA used this type of encoding [10].

The genetic algorithm then creates a population of solutions and applies
genetic operators such as mutation and crossover to evolve the solutions in order
to find the best one(s). In using a GA, usually we need to consider the following
three most important aspects. (1) definition of the fitness function, (2) definition
and implementation of the genetic representation for constructing the search
space and (3) definition and implementation of the genetic operators. Once these
three have been well defined, the generic genetic algorithm should work fairly
well. Beyond that you can try many different variations to improve performance
or computational efficiency (e.g., parallel GAs).

Fitness Function A fitness function is a particular type of objective function
that is used to measure how close a given design solution is to achieving the
set aims. The fitness function basically determines which possible solutions get
passed on into the next generation of solutions (after genetic operations). This is
usually done by analyzing the chromosome, which encodes a particular candidate
solution to the problem you are trying to solve. The fitness function will look
at a pool of chromosomes and make some qualitative assessment, returning a
fitness value for that solution. The rest of the genetic algorithm will discard any
solutions with a “poor” fitness value and accept any with a “good” fitness value.
Two main classes of fitness functions exist: one where the fitness function does
not change, as in optimizing a fixed function or testing with a fixed set of test
cases; and one where the fitness function is mutable, as in niche differentiation
or co-evolving the set of test cases [21].

Search Space If we are solving some problems, we are usually looking for
some solutions, which will be the best among others. The space of all feasible
solutions (it means objects among those the desired solution is) is called search
space, also state space. Each point in the search space (in chromosome coding)
represent one feasible solution. Genetic algorithms are about search in this space
to find the best chromosome(s) guided by the heuristics of maximizing the fitness
function. The chromosome with highest fitness has the highest probability to be
selected for genetic operations or directly pass into the next generation.

Genetic Operations The most important operator in GA is crossover,
based on the metaphor of sexual combination and reproduction inspired by the
real biological life which are extremely widespread throughout both the animal
and plant kingdoms. Crossover is a term for the recombination of genetic in-
formation during sexual reproduction. In practice, after we have decided what
encoding we will use, crossover selects genes from parent chromosomes and cre-
ates a new offspring. The offsprings have equal probabilities of receiving any
gene from either parent, as the parents chromosomes are combined randomly.
The simplest way is to choose randomly some crossover point and everything
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before this point copy from a first parent and then everything after this point
copy from the second parent.

In GAs, mutation is the stochastic flipping of bits in chromosome that occurs
in each generation. It is always with a very low mutation rate (e.g., with a prob-
ability of something like 0.001 ∼ 0.05). This is to prevent falling all solutions in
population into a local optimum of solved problem. Mutation changes randomly
to generate new offspring. For binary encoding we can switch a few randomly
chosen bits from 1 to 0 or from 0 to 1. As a matter of fact, mutation is not an
especially important operator in GA. It is usually set at a very low rate, and
sometimes can be omitted.

4 Evolutionary Collective Behavior Decomposition

Collective intelligence is a shared or group intelligence that emerges from the col-
laboration and competition of many individuals and appears in consensus deci-
sion making of agents. Collective behaviors can be modeled by agent-based games
where each individual agent follows its own local rules. Agent-based models
(ABM) [41] of complex adaptive systems (CAS) provide invaluable insight into
the highly non-trivial collective behavior of a population of competing agents.
These systems are universal and researchers aim to model the systems where
involving agents are with similar capability competing for a limited resource.
Agents may share global information and learn from past experience.

In this section, we will introduce an evolutionary approach to study the re-
lationship between micro-level behaviors and macro-level behaviors. A complex
collective behavior is assumed to be generated by aggregation of several groups
of agents following different strategies. The strategy of agents is modeled by some
simple games because of limited information available for the agents. Genetic al-
gorithms are used to obtain the optimal collective behavior decomposition model
based on history data. The trained model will be used for collective behavior
prediction.

4.1 Complex Adaptive Systems and Pattern Formation

Extensive research in econophysics [26] has been done on agent-based experimen-
tal games from the perspective of interdisciplinary disciplines such as physics,
mathematics and complexity science. For example, Sysi-Aho proposed a genetic
algorithm based adaptation mechanisms within the framework of the minor-
ity game, and found that the adaptation mechanism leads the market system
fastest and nearest to maximum utility or efficiency [30]. Gou [16] studied how
the change of mixture of agents in the mixed-game model can affect the change
of average winnings of agents and local volatilities of the artificial stock market.

Unfortunately, fewer research focus on exploring macro-level collective behav-
ior prediction by understanding the emergent properties of macro-level behavior
from micro-level behaviors. We can rarely see that agent-based models were put
into practice of real market predictions, e.g. predicting fluctuation of the stock
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prices. In this chapter, we assume that the collective data are generated from the
combination of micro-behaviors of variant groups of agents employing different
strategies. We then model and estimate the resource-constrained environment
parameters to maximize the approximation of the system outputs to the real-
world test data.

In his last years, Turing has focus his interests on patter formation, to under-
stand the orderly outcomes of self-organization. Especially in biology, pattern
formation refers to the generation of complex organizations of cell fates in space
and time. However, our problem of collective behavior decomposition is sort of
reverse version of the pattern formation. The patterns of individual agents are
lost through behavior aggregation. We hope to rediscover these lost patterns by
studying the micro-level and macro-level relations. Fig. 2 gives an example of
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Fig. 2. A sample of random collective behavior, which is generated by a group of agents
playing the minority game with fixed strategies.

aggregated collective behavior generated by a group of agents playing the mi-
nority game [3]. It is obvious to see that the observable collective behaviors are
random and no patterns can be directly detected. However, this messy behav-
ior is mostly generated by deterministic individual behaviors. More details are
available in the next section.

4.2 Agent Behavior Modeling with Minority Game

Agent-based experimental games have attracted much attention in different re-
search areas, such as psychology [35], economics [13, 36] and financial market
modeling [12, 20, 32]. Among these agent-based models, minority game (MG) [3]
is an important model in which an odd number N of agents successively compete
to be in the minority side. This model can be regarded as a simplified version of
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EI Farol Bar Problem [1], in which a number of people decide weekly whether go
to the EI Farol bar to enjoy live music in the risk of staying in a crowd place or
stay at home. As a new tool for learning complex adaptive systems, the minority
game has been applied to variety areas especially in financial market modeling
[12, 20, 32]. In real-life scenarios, some agents make random decisions and some
groups employ similar strategies. The complexity of marketing world is embod-
ied in existence of varieties types of agents using strategies based on their own
rules.

Formally, the minority game consists of N (an odd number) agents, at time
t (t = 1, . . . , T ), each agent need to take an action ai(t) for i = 1, · · · , N , to
attend room A or B.

ai(t) =

{
A Agent i choose room A
B Agent i choose room B

(1)

At each round t, agents belonging to the minority group win. The winning out-
come can be represented by a binary function w(t). If A is the minority side, i.e.
the number of agents choosing Room A is no greater than (N − 1)/2, we define
the winning outcome w(t) = 0; otherwise, w(t) = 1.

w(t) =

{
0 if:

∑N
i=1∆(ai(t) = A) ≤ N−1

2
1 otherwise

(2)

where ∆(α) is the truth function:

∆(α) =

{
0 α is false
1 α is true

(3)

We assume that agents make choices based on the most recent m winning out-
comes h(t), which is called memory and m is called the length of memory.

h(t) = [w(t−m), . . . , w(t− 2), w(t− 1)] (4)

Given the outcome w(t) at the moment t, agent i may keep a record ri(t) that
tells whether it has won the game or not.

ri(t) =

{
Win Agent i wins at time t
Loss Agent i loses at time t

(5)

Table 4. One sample strategy for an agent in the minority game with m = 4.

h(t) 0000 0001 0010 0011 0100 0101 0110 0111

S(h(t)) A A B B B A B B

h(t) 1000 1001 1010 1011 1100 1101 1110 1111

S(h(t)) B A A A A B B B
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Fig. 3. For a given time step: the strategy maps the last four winning groups (m = 4)
into the agent decision. Solid thick lines mimic how the information flows in the system:
the N agents take the last m numbers ( 1101 in this case) from the sequence of winning
groups and perform an action accordingly. The N actions (A or B) are transformed
into the next winning group (0 in this case) through the minority rule. This information
is shared with the agents for their own feedback and becomes the next number in the
sequence of winning outcomes. This figure is modified from a similar one in [28].

In minority game, we usually assume that each agent’s reaction based on the
previous data is governed by a “strategy” [3]. Each strategy is based on the past
m-bit memory which are described as a binary sequence. Every possible m-bit
memory are mapped in correspond to a prediction of choosing room A or B
in the next round. Therefore, there are 22

m

possible strategies in the strategy
space. Agents employing the same strategy will be categorized as one strategy
group. Given the memory h(t), the choice for the agent i guided by the strategy
S is denoted by S(h(t)). The value of m is usually set by a number less than 6
in practical experiments as people tend to use short-term memory rather than
a long-term memory in making a 0-1 decision.

Table 4 shows one possible strategy with m = 4. For example, h(t) = [0010]
represents that if the agent who choose B in the latest three time steps win, the
next round (at time t) choice for this agent will be S([0010]) = B. A strategy
can be regarded as a particular set of decisions on the permutations of previous
winning outcomes. The decision process of minority game can be schematically
illustrated in the Fig. 3. We assume each agent has its own strategy, at each time
step, the agent will take action based on previous m outcomes of the system.
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The winning of this round by applying the minority rule will be broadcast to
the system.

4.3 Behavior Learning with Genetic Algorithms

In the previous research, Li et al. [23] designed an intelligent agent that uses
machine learning method to learn the patterns of other agents with complete
information, i.e. the information who went to which room in which round of
the game is available to the public (i.e. ri(t) and w(t) for t = 0, . . . , T and i =
1, . . . , n). Fig. 4 is the performance of the intelligent agent using a probabilistic
estimation tree [33]. As we can see from the figure, the predictive power of this
agent is significantly better than the random guessing which means that it can
capture the patterns very well from a seemingly random and messy collective
information shown in Fig. 2.
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Fig. 4. The performance of the intelligent agent which can learn the behaviors of others
with the complete information.

However, the complete information is not a realistic assumption. In most
cases, we can only obtain the collective data w(t). Ma et al. first proposed a
framework that assumes this sort macro-level behavior can be decomposed into
the micro-level behaviors of several strategy groups in the minority game. A
Genetic Algorithm [15] can be used to estimate the parameters of the decompo-
sition. We assume that N agents are divided into a number of strategy groups.
One group of agents is random agents, and several groups of agents have fixed
strategies of their own. However, we have no idea how many agents in each group
and what strategies this group of agents employ. We only know the history of
winning outcomes w(t) and an educated guessed maximum group number K.
We use a vector of parameters to represent the number of agents in each group
and the strategy they use, a GA can be used to optimize these parameters in
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order to obtain the most similar history of winning outcome sequence. Since
the parameters are independent to each other and the problem is with a large
parameter space, using a stochastic search algorithm such as GA is a way for
finding the most suitable parameters.

1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 ……………………………………..1 0 0 1 0 1 1 1 0 0 0 1Xj(t)

Proportion of Random Agents

Proportion of Agents Using Strategy 1

Strategy 1

Proportion of Agents Using Strategy 2

Strategy 2

Proportion of Agents Using Strategy K

Strategy K

  0 1 0 0 0 0 1 1 0    …… 1 0 1 1MG Winning Outcomes Yj(t)

  0 0 1 1 0 1 1 0 0    …… 0 0 0 1Actural Winning Outcomes W(t)

   +1                 +1       +1      +1      ……….       +1      +1F(xj(t)) = 

Fig. 5. The process for calculating the fitness function for a chromosome at time t. A
chromosome is consisted by numbers of agents in each group and the strategies of this
group. For each chromosome xj , we can obtain a sequence of winning outcomes yj(t)
by running the MGs based on the given parameters. The fitness function is calculated
based on the comparisons between yj(t) and the actual sequence of winning outcomes
w(t).

Given the winning outcomes w(t) and a guessed maximum number of groups
using fixed strategies K, the agents can be divided into K + 1 groups:

{Gr, G1, . . . , GK}

where group Gr is the group of random agents and Gk for k = 1, . . . ,K em-
ploys the strategy Sk. We use the following parameters to define one MG: the
percentage of random agents Pr, percentage of agents with one certain fixed
strategy PSk

where Sk is the strategy for the group. Therefore, we can construct
a chromosome x consisting of the following parameters.

x = [Pr, PS1
, S1, . . . , PSK

, SK ]

The fitness function calculation of f(x) is illustrated in Fig. 5. At time t of
the game, in order to evaluate one chromosome xj (j = 1, . . . , J where J is the
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population size in the GA), we run the MG with the parameter setting given
by xj to obtain the history of winning outcomes yj(t). Comparing y(t) with the
actual sequence w(t): for t runs from 1 to a specified time T , once yj(t) = w(t),
we add 1 to f(xj). Formally:

f(xj(t))←
{
f(xj(t)) + 1 if: yj(t) = w(t)
f(xj(t)) otherwise

(6)

At each time t, the best chromosome x∗(t) is selected from the pool:

x∗(t) = arg max
j
f(xj(t)) for j = 1, . . . , J

Given the best chromosome x∗(t), its parameters can give the best possible
complete information scenario so that we can use machine learning algorithms to
predict each agent’s behavior and make final decision based on these predictions
[23, 25].

4.4 Modeling with Mixed-Games

The evolutionary collective behavior decomposition is a general framework for
studying the micro-level and macro-level relations. In order to obtain a better
approximation of the collective behaviors in the real-world market, Gou [16]
modifies the MG model and proposes the ‘mixed-game model’, in which agents
are divided into two groups: each group has different memory length, Group GN
plays minority game with the same strategy, while Group GJ plays majority
game with the same strategy. Comparing to the MG, the most significant part
of mixed-game is that it has an additional group of “trend chasers”, therefore be
more realistic to simulate a real-world case, e.g., financial market, social networks
and etc.

Technically, all agents in GN choose the best strategy with which they can
predict the minority side most correctly, while all agents in GJ choose the best
strategy with which they can predict the majority side most correctly. N1 rep-
resents the number of agents in GN and N2 represents the number of agents in
GJ . We use m1 and m2, respectively, to describe the memory length of these
two groups of agents. As each agent’s reaction is based on a strategy correspond-

ing a response to past memories, there are 22
(m1)

and 22
(m2)

possible strategies
for GN or GJ , respectively. We assume the completeness of marketing world
is embodied in existence of variant groups of agents using their own strategies.
Therefore, we improve the mixed-game of Gou [16] by dividing the agents into
three diverse types of agents: agents who make random decisions (denoted by
GR), agents of Group GN (playing the minority game) with different strategies,
agents of Group GJ (playing the majority game) with different strategies. Fig. 6
illustrates that the collective behavior is a combination of choices from the above
three types of agents. Given history sequence h(t), we can use GA to explore all
possible combinations of subgroups or compositions of the market, then use this
information to make better choices.
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Fig. 6. The generative process for collective data. All agents can be divided into KN +
KJ +1 groups where agents in the same subgroups act identically based on the strategy
they follow. The collective data can be regarded as an aggregation of all agents’ actions.

Given the history winning outcomes w(t), the expected maximum number
of subgroups using fixed strategies in GN is KN , and the expected maximum
number of subgroups using fixed strategies in GJ is KJ . Thus agents can be
divided into KN +KJ + 1 groups:

{GR, G(S1
N ), G(S2

N ), . . . , G(SKN

N ), G(S1
J), G(S2

J), . . . , G(SKJ

J )}

where GR represents the group of random agents, G(SiN ) (for i = 1, . . . ,KN )
represents the subgroup agents holding strategy SiN in Group GN (the group
playing minority game). G(SkJ) (for k = 1, . . . ,KJ) represents the subgroup
agents holding strategy SkJ in Group GJ .

The chromosome for genetic algorithms x is encoded with the following pa-
rameters:

x = [PR, P (S1
N ), S1

N , . . . , P (SKN

N ), SKN

N , P (S1
J), S1

J , . . . , P (SKJ

J ), SKJ

J ]

– PR : the percentage of random agents among all agents (i.e. PR = |GR|
N )

– P (SiN ): the percentage of the number of agents in the minority game sub-

group i (i ∈ [1, 2, . . . ,KN ]) with the fixed strategy SiN (i.e. P (SiN ) =
|G(Si

N )|
N ).
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– SiN : Binary coding of the minority game strategy SiN .

– P (SkJ): the percentage of the number of agents in the majority game sub-

group k (k ∈ [1, 2, . . . ,KJ ]) with the fixed strategy SkJ (i.e. P (SkJ) =
|G(Sk

J )|
N ).

– SkJ : Binary coding of the majority game strategy SkJ .

This evolutionary mixed-game learning model was first proposed by Du et al. [11]
and some empirical results to verify its effectiveness in the real-world applications
will be given in the next section.

4.5 Experimental Studies

The general framework is referred to evolutionary game learning (EGL) and the
micro-level behavior of agent can be modeled by either minority game, mixed-
game or other game theory models. The model with the mixed game is referred
to as evolutionary mixed-game learning (EMGL) and the model with the mi-
nority game is evolutionary minority game learning (ENGL). In the following
experiments, We tested these two models on the U.S.Dollar-RMB (Chinese Ren-
minbi) exchange rate3. For each trading day t, suppose the opening price is Vb
and the closing price is Vf , the fluctuation of price can be transferred to w(t) as
follows:

w(t) =

{
1 if: Vb < Vf
0 otherwise

(7)

By correctly predicting w(t) using the learning model, we can capture the ups
and downs of the market prices though we are not trying to predict the exact
price at this stage.

In the following experiments we set KN = KJ = 20. Since almost all agents
play with history memories of 6 or less in a typical MG, and mN is usually
larger than mJ when using mixed-game model to simulate real market [16], we
set mN = 4, 5, 6 and mJ = 3 to establish three configuration of EMGL models.
For example, EMGL(6-3) represents mN = 6, mJ = 3. We set K = 20 and m = 3
for the ENGL model. As for the GA, we set population size J = 50, crossover
rate Pc = 0.8, mutation rate Pm = 0.05. We run the whole experiments for 30
times to reduce the influences of randomness in GAs.

From the USD-RMB experiment shown in Figure 7, we can see both EMGL
(starred curve) and ENGL (dotted curve) can predict with high accuracy (the
mean accuracy is up to 58.6% for ENGL and 63.8% for EMGL (4-3)), indicating
a strong existing pattern captured by the new models. In general, almost all
results of ENGL and EMGL are statistically better than the random guess (the
mean is around 50% with a small variance) plotted at the bottom. Du et al.
tested the EMGL and ENGL models on 13 Chinese stocks. The experimental
results show that both models perform significantly better than the random
guess [11].

3 Data obtained from: http://bbs.jjxj.org/thread-69632-1-7.html
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Fig. 7. Performance of the ENGL model and the EMGL model with different memory
lengths on the USD-RMB exchange rate. Each curve is plotted on the mean accuracy
with plus and minus the standard deviation.

5 Evolutionary Market Mechanism Designs

In the last section, we investigated the collective behavior decomposition in
agent-based market and introduced an evolutionary learning framework of mod-
eling agent behavior by game theory models. We use the new model to predict
the collective behaviors by learning from the history data. The collective behav-
ior of the market is assumed to be the aggregation of individual behaviors. In
the simple minority game and mixed-game modeling, the behavior of agents are
governed by a set of parameters and make decisions independently. This is not
a realistic assumption, as we know, the interaction between agents are the key
issue for why the system is so unpredictable and complex. In this section, we will
mainly consider the interactions between agents and how should they operate
under the rules of market - the market mechanism.

The market mechanism design is an important topic in computational eco-
nomics and finance for resolving multi-agent allocation problems [22]. In this
section, we review relevant background of trading agents, and market designs
by evolutionary computing methods. In particular, a genetic algorithm can be
used to design auction mechanisms in order to automatically generate a desired
market mechanism for markets populated with trading agents.



Evolutionary models for agent-based complex behavior modeling 19

Equilibrium
 Quantity


E
q


. P
ri

ce



Price


Quantity


Supply Curve
Demand Curve


E


Fig. 8. An schematic illustration of a supply-demand schedule, where the intersection
E is the equilibrium.

5.1 Market Mechanism

In every classical economic model, demand and supply always play prominent
roles. Supply is used to describe the quantity of a good or service that a household
or firm would like to sell at a particular price. Demand is used to describe the
quantity of a good or service that a household or firm chooses to buy at a given
price. For a buyer, with increasing of quantity of the commodity, he will be
inclined to bid a lower price to make a purchase, but with the less quantity
of commodity, he has to increase his bid price. Because buyers want to make
purchases at lower prices so that the demand curve slopes downward. For sellers,
if the commodity is at a higher price, they will be inclined to sell as many as they
can, that keeps the supply curve slope upward. The intersection of the supply
curve and demand curves is called the equilibrium, and the corresponding price
and quantity are called, respectively, the equilibrium price and the equilibrium
quantity (Fig. 8). In case of prices beyond the equilibrium, the market will self-
correct them to the equilibrium by an “invisible hand” according to Adam Smith.
At an equilibrium price, consumers get precisely the quantity of the good they
are willing to buy at that price, and sellers sell out the quantity they are willing to
sell at that price. Neither of them has any incentive to change. In a competitive
market, the price actually paid and received in the market will tend to the
equilibrium price. This is called the law of supply and demand [29].

In economics and game theory, interactions of traders consist of two compo-
nents: a protocol and a strategy. Protocol defines the valid behavior of traders
during the interaction. It is set by the marketplace owner and should be known
publicly for all the participants. Strategy is privately designed by each agent to
achieve their negotiation objectives within a protocol. In the previous section,
the minority game model was used for modeling the agent strategy. In this sec-
tion, we will put our focus on the protocol. Moreover, the effectiveness of the
strategy is very much dependent on the protocol: an optimal strategy for one
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protocol may perform very badly for other protocols. In a marketplace, the pro-
tocol is an“auction”. It is the market mechanism by which buyers and sellers
interact in this marketplace. Strategy is the adaptive behavior or “intelligence”
of traders such as the ZIP agents’ [4] updating rules that will be discussed later.

There are many types of auctions. English Auction (EA), sellers keep silent
and buyers quote increasing bid-prices, and the buyer with highest bid is allowed
to buy; Dutch Flower Auction (DFA), buyers keep silent and sellers quote de-
creasing offer-prices and the seller with lowest offer is allowed to sell. In other
auctions such as the Vickery or second-price sealed-bid auction, sealed bids are
submitted and the highest bidder is allowed to buy, but at the price of the second
highest bid. EA and DFA are also called single sided auctions because either buy-
ers or sellers are active but not both. The Continuous Double Auction (CDA),
one the most popular of all auctions, allows buyers and sellers to continuously
update their bids/offers at any time in the trading period. The bids/offers are
quoted simultaneously and asynchronously by buyers/sellers. At any time the
sellers/buyers are free to accept the quoted bids/offers [32].

In 1950s, Smith [36] demonstrated that markets consisting of small numbers
of traders could still exhibit equilibration to values predictable from classical
microeconomic theory. In a given supply-demand schedule with n transactions
between ‘sellers’ and ‘buyers’, the coefficient of convergence α (0 ≤ α ≤ 1)is
introduced to measure the deviation of transaction prices from the theoretical
market equilibrium price p0 [36]. α is calculated at the end based on transaction
prices pi for i = 1, · · · , n. The coefficient of convergence is defined as follows:

α = 100 · δ0/p0 (8)

where

δ0 =

√√√√ 1

n

n∑
i=1

(pi − p0)2 (9)

The E-market discussed in this chapter as well as in [5] and [32] is based on
Smith’s experiment and the α measure is used to evaluate the convergence of
the market.

5.2 Agent Strategy Modeling

Zero-intelligence (ZI) agents were initially proposed to explore the relationship
between limited rationality, market institutions and the general equilibration of
markets to the competitive equilibrium [12]. The fundamental discovery is that
within the classical double auction (CDA) market only the weakest elements of
rationality is needed to exhibit high allocative efficiency and price convergence
in a competitive market. This convergence is later proved as a statistical must
but not an emergent behavior. Zero intelligence plus (ZIP) agents, proposed by
Cliff [4] as an augmented version of ZI agents use a simple machine learning
algorithm to adapt their behavior for maximizing their own utility function.
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Each ZIP trader i is given a private secret limit price, λi, which for a seller is
the price below which it must not sell and for a buyer is the price above which
it must not buy (based on Smith’s experiment). The pseudo-code of the ZIP
agent’s strategy is shown in Alg. 1. If a ZIP trader completes a transaction at its
λi price then it generates zero utility, where utility for traders means the profit
for the sellers or saving for the buyers. Each ZIP trader i maintains a time-
varying profit margin µi(t) and generates quote-prices pi(t) at time t according
to

pi(t) = λi(1 + µi(t)) (10)

pi(t) = λi(1− µi(t)) (11)

for sellers and for buyers, respectively. Trader i is given an initial value µi(0)
(when t = 0) which is subsequently adapted over time using a simple machine
learning technique known as the Widrow-Hoff (W-H) rule which is well used in
gradient optimization and back-propagation neural networks. The W-H rule has
a “learning rate” βi that governs the speed of convergence between trader i’s
quote price pi(t) and the trader’s idealized target price τi(t) which is determined
by a stochastic function of last quote price with two small random absolute
perturbations: Ai(t) and Ri(t). Ai(t) is generated uniformly from the interval
[0, Ca] denoted by U [0, Ca] for sellers and U [−Ca, 0] for buyers. For sellers, Ri(t)
is generated from

Ri(t) ∼ U [1, 1 + Cr]

and for buyers

Ri(t) ∼ U [1− Cr, 1]

Ca and Cr are called system constants. To smooth over noise in the learning,
there is an additional “momentum” γi for each trader (momentum is also used
in back propagation neural networks.

For each ZIP agent i, its adaptation is governed by three real-valued param-
eters: learning rate βi, momentum γi and initial profit margin µi(0). Because
of the randomness and the uncertainty involved in trading, a trader’s values for
these parameters are assigned at initialization, using uniform distributions: for
all traders, βi, γi and µi(0) are sampled from:

β ∼ U(βmin, βmin + β∆)

γi ∼ U(γmin, γmin + γ∆)

µi(0) ∼ U(µmin, µmin + µ∆)

Hence, to initialize an entire ZIP trader market it is necessary to specify values
for the six market-initialization parameters βmin,β∆, γmin, γ∆, µmin, µ∆ plus
the other two system constants Ca and Cr. Clearly, any particular choice of
values for these eight parameters can be represented as a vector:

V = [βmin, β∆, γmin, γ∆, µmin, µ∆, Ca, Cr] ∈ R8
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which corresponds to a single point in the 8-dimensional space of possible param-
eter values. A Genetic Algorithm can be used to explore this space for parameter
optimization. The degree of price convergence to the equilibrium price can be
used as the fitness function.

5.3 Evolutionary Optimization

Market mechanism design addresses the problem of designing an auction in which
the agents’ interaction generates a desirable macro-scale outcome, by assuming
the trading agents are self-interested. A desired market can be simply considered
as the one with least transaction price variance to the equilibrium price deter-
mined by the market’s supply-demand schedule. Therefore, the fitness function
for each individual can be calculated by monitoring price convergence in a series
of n CDA market experiments, measured by weighting Smith’s α measurement
on the given supply-demand schedules. If each experiment lasted k “days”, the
score of experiment number e is:

S(Vi, e) =
1

k

k∑
d=1

wdα(d) (12)

where α(d) is the value of α and wd is the weight on the day d. According to
the experiments in [5], all experiments last for 6 days and we place a greater
emphasis on the early days of trading. The weights are set as follows: w1 = 1.75,
w2 = 1.50, w3 = 1.25 and w4, w5 and w6 are all equal to 1.00. The fitness of the
genotype Vi is evaluated by the mean score of n experiments:

F (Vi) =
1

n

n∑
e=1

S(Vi, e) (13)

Where n = 50 the performance of trading experiments are fairly stable based
on empirical work in [34]. The lower fitness a market has, the sooner the market
approaches to the equilibrium and the smaller price variance the market has.
GAs were used for optimizing the parameters for ZIP agents and showed that
evolved parameter settings via GAs perform significantly better than “educated
guessing” in CDA [4].

Now consider the case when we implement CDA. At time t, either a seller
or a buyer will be selected to quote, which means that sellers and buyers have a
fifty-fifty chance to quote. We use Qs to denote the probability of the event that
a seller offers. Then in CDA, Qs = 0.5. For English Auction Qs = 0 and Dutch
Flower Auction Qs = 1; which means, sellers cannot quote and sellers are always
able to quote, respectively. The inventive step introduced in [5] was to consider
the Qs with values of 0.0, 0.5 and 1.0 not as three distinct market mechanisms,
but rather as the two endpoints and the midpoint on a continuum referred as a
continuous auction space. For other values, e.g., Qs = 0.1, it can be interpreted
as follows: on the average, for every ten quotes, there will be only one from
sellers while 9 are from buyers. This also means, for a particular significant time
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t, the probability of a seller being the quoting trader is 0.1. The fact is, this kind
of auction is never found in human-designed markets. However, no one knows
whether this kind of hybrid mechanism in which Qs 6= 0, 0.5 or 1.0 is preferable to
human-designed ones. This motivates us to use a GA to explore with additional
dimension Qs ranging from 0 to 1 giving us the following genotype based on the
old one by adding a new dimension Qs:

[βmin, β∆, γmin, γ∆, µmin, µ∆, Ca, Cr, Qs] ∈ R9

According to the experiments in [5], the hybrid mechanisms are found to be the
optimal auctions in 2 of the 4 given schedules.

Although the case of Qs = 0.5 is an exact approximation to the CDA in
the real-world, the fact that a trader will accept a quote whenever the quoting
price satisfies his expected price. For the two single sided extreme cases of Qs =
0.0 and Qs = 1.0, this model is not an exact analogue of the EA and DFA.
Qin and Kovacs [34] proposed a more realistic auction space. All the following
experiments are conducted in this realistic auction space. More detailed are
available in [34].

5.4 Trading with Heterogeneous Agents in CDA

Smith’s experiment [36] qualitatively indicated that the relationship of the supply-
demand schedule has an impact way in which transaction prices approached the
equilibrium, even with a small number of participants. This experiment has been
conducted by using ZI [12] and ZIP agents [5], respectively. Here we will consider
the case of using a mixture of the same number of ZI and ZIP agents, which are
referred to as heterogeneous agents experiments.

For all agents, the distribution of limit price determines the supply and de-
mand curves for the experiment and their intersection indicates the theoretical
equilibrium price and quantity. In the simulation of real marketplaces, we assume
that each significant event (quoting, making deal or not making deal etc.) always
occurs at a unique time. In the CDA market, at time t, an active trader (seller or
buyer) i is chosen randomly to quote a price pi(t) to become the “current quote
q(t)”, where the active traders are ones who still have utility (goods or money)
for deals. Next, all traders on the contra side (i.e. all buyers j if i is a seller,
or all sellers j if i is a buyer) compare q(t) to their current quote price pj(t)
and if the quotes cross (i.e. if pj(t) ≤ q(t) for sellers or pj(t) ≥ q(t) for buyers)
then the trader j is able to accept. If no traders are able to accept, the quote is
regarded as “ignored”. For ZIP traders, either the current quote is accepted or
ignored and the traders update their profit margins µ(t) using the W-H rule. For
example, suppose the last quote is an offer and was accepted at price q then any
sellers for which their price is less than q should raise their profit margin with
learning rate of βi. The details about the updating rules for ZIP agents can be
found in [4] (See Alg. 1). For ZI traders, the previous transaction prices and the
status of the last offer do not have cause any influence on their further actions
(ZI traders are not intelligent, they only quote prices randomly).
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Algorithm 1: Pseudocode for updating rules of ZIP traders

For Sellers: ;
if the last shout was accepted at price q then

any seller si for which pi ≤ q should raise its profit margin;
else

if the last shout was a bid then
any active seller si for which pi ≥ q should lower its margin

else
if the last shout was an offer then

any active seller si for which pi ≥ q should lower its margin

For Buyers: ;
if the last shout was accepted at price q then

any buyer bi for which pi ≥ q should raise its profit margin;
else

if (the last shout was an offer then
(any active buyer bi for which pi ≤ q should lower its margin)

else
if the last shout was a bid then

any active buyer bi for which pi ≤ q should lower its margin

5.5 Experimental Studies

In this section, we conduct a series of experiments of evolutionary designs of
market mechanism based on heterogeneous agents where ZI and ZIP agents have
the approximately same number. The auction space model is the one proposed
in [34]. All experiments are based on four given supply-demand schedules: SD1,
SD2, SD3 and SD4 (see Fig. 9). There are 22 trading agents in the experiments,
11 sellers and 11 buyers, each of them is initialized with one unit of goods
and their limit prices are distributed as supply and demand curves show. The
vertical axis represents price and the equilibrium price is 2.00 for all these 4
given schedules. Each schedule of supply and demand curves is stepped. This is
because the commodity is dealt in indivisible discrete units, and there are only
a small number of units available in the market. Thus, supply and demand in
this simple market differs appreciably from the smoothly sloping curves of an
idealized market. These are the same schedules have also been used in previous
studies [4, 5, 31, 34, 32] for the convenience of comparison studies.

Fig. 10 shows the performance of the three groups of agents: ZI only, ZIP only
and the heterogenous mixture of of ZI and ZIP. It is obvious that the ZIP only
group has the minimum variance (α value) because the learning ability of the ZIP
agents. ZI agents are the most naive agents without learning ability, the α value
for this group is no doubt the largest of the 3. The right-hand side figure of Fig.
10 shows the performance of the heterogeneous agents under different auctions:
EA, DFA and CDA. Though the differences are not statistically different, we
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Fig. 9. Supply-demand schedules for experiments: SD1, SD2 (upper) and SD3, SD4
(bottom).

can still see the CDA gives the best performance in these three human-designed
auctions.

In the market evolution experiments, a simple GA is used to minimize the
fitness value (see equation 13) given 25 independent runs of trading experiments.
Population size is 20 and each parameter is coded with 8 bits, crossover rate is
a constant with the value of 0.7 and mutation rate is 0.015. Elitism strategy is
applied which means that the fittest individual in each generation is logged. We
run 600 generations in a single experiment. However, one of the drawbacks of
GA is that it cannot be guaranteed the global optimum. Thus we gain formal
simplicity at the cost of computation. We run the entire process of evolution
many times independently and reduce the effect of randomness as time goes by,
to encourage convergence. The results of Qs represented here are based on 25
independent runs of the GA on the given 4 supply-demand schedules and the
average results with standard deviation through generation 600 are shown in
Fig. 11.

As we can see from the figures, although Qs values converges to real-world
auctions in 3 of the 4 given schedules, we still found a hybrid auction in SD4.
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Fig. 10. Left: the average performance of 3 groups of agents: ZI only, ZIP only and the
mixture of the same number of ZI and ZIP. Right: given a population of heterogenous
agents, the comparisons of α value under different auctions: EA (Qs = 0), DFA(Qs = 1)
and CDA (Qs = 0.5).

Comparing the ZIP agents in the old auction space and the new auction space,
the only difference is SD3. Both in the old auction [4] and new auction space [34,
32] with ZIP agents, there were hybrid auctions found by GAs. Cliff [5] presented
a result of using only ZI agents given SD3 and the hybrid auction was found.
However, the Qs values for these hybrid auctions are different: Qs = 0.39 for
experiments with ZI agents only, Qs = 0.16 for ZIP agents in the old auction
space and Qs = 0.23 for ZIP agents in the new auction space [34]. Here in
the experiment with heterogeneous agents which are a mixture of ZI and ZIP
agents, the optimal auction is CDA but not a hybrid one. We believe that the
optimal auction for a market is related to the supply-demand schedule given.
So far, we just demonstrated with empirical studies due to the complexity of
such problems. The theoretic relations among hybrid auction, supply-demand
schedule, the number of agents and other factors are considered as a future work.
However, we demonstrated that given a particular supply-demand schedule, we
can use some machine learning technology to find the optimal auction for such
a market.

6 The End

Turing died from cyanide poisoning, possibly by his own hand. On June 8, 1954,
shortly before what would have been his 42nd birthday, he was found dead in
his bedroom. The logo of Apple computer is often erroneously referred to as a
tribute to Alan Turing, with the bite mark a reference to his method of suicide.
It is not true though even Steve Jobs hopes it were [43]. He had left a large pile
of handwritten notes. Decades later this fascinating material is still not fully
understood.
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Fig. 11. The comparisons of evolutionary trials of Qs for ZIP (dot lines) and hetero-
geneous agents (solid lines) on schedules SD1 to SD4 through 600 generations.

In this chapter, we follow Turing’s footstep and recognize his early ideas
in neural networks and evolutionary computation thanks to Copeland and his
colleagues [6–8]. We interpret his ideas of genetic algorithm by a novel example
based on Webster and Fleming’s work [40]. The essentials of genetic algorithm are
summarized following after a brief history of the GA. We introduced two novel
evolutionary models in agent-based computational economics. Both models use
GAs to optimize the agent behavior to obtain the wanted market dynamics. The
first model studies the collective behavior decomposition which is to estimate
individual agent’s strategies (or behaviors) from the random macro-level infor-
mation. The second model uses GAs to optimize both agents’ strategies and the
protocol between them (market mechanism) in order to obtain the most efficient
market. Both models’ performance are testified by experimental studies to show
the effectiveness.

2012 is the year we celebrate Turing’s 100 birthday and his contributions that
has led us to the new era of computing and information technology. We have
witnessed the development of computer science and its impact on our life. The
research presented in this chapter is relatively new. Following Turing’s footsteps,
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we shall see a bright future of using computation to understand the economics,
psychology, sociology and other complex adaptive systems.
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