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Abstract. In this chapter, how the structure of a network can affect
the social welfare and inequality (measured by the Gini coefficient) are
investigated based on a graphical game model which is referred to as
the Networked Resource Game (NRG). For the network structure, the
Erdos-Renyi model, the preferential attachment model, and several other
network structure models are implemented and compared to study how
these models can effect the game dynamics. We also propose an algo-
rithm for finding the bilateral coalition-proof equilibria because Nash
equilibria do not lead to reasonable outcomes in this case. In economics,
increasing inequalities and poverty can be sometimes interpreted as a
circular cumulative causations, such positive feedback is also considered
by us and a modified version of the NRG by considering the positive
feedback (p-NRG) is proposed. The influence of network structures in
this new model is also discussed at the end of this chapter.

Keywords: Networked Resource Game; P-NRG Network Formation; Graphical
Games; Nash Equilibrium

1 Introduction

Modern game theory began with the idea regarding the existence of mixed-
strategy equilibria in two-person zero-sum games and its proof by John von
Neumann. His book Theory of Games and Economic Behavior [27] published in
1944 considered cooperative games of several players. The second edition of this
book provided an axiomatic theory of expected utility, which allowed mathemat-
ical statisticians and economists to treat decision-making under uncertainty. His
later paper published in 1952 introduced a polynomial algorithm, it is the first
work on algorithm even before the appearance of digital computer. The modern
game-theoretic concept of Nash Equilibrium is defined in terms of mixed strate-
gies, where players choose a probability distribution over possible actions. The
contribution of John Forbes Nash in his 1951 paper Non-Cooperative Games was
to define a mixed strategy Nash Equilibrium for any game with a finite set of
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actions and prove that at least one (mixed strategy) Nash Equilibrium must ex-
ist in such a game. How to develop efficient algorithms for calculating the Nash
Equilibrium in a given system is a focus of modern Algorithmic Game Theory
[21].

In recent years, graphical games have attracted much attentions for model-
ing social phenomena. This emerging research provides new approaches to in-
vestigate problems such as group consensus making, networked bargaining and
trading strategies. In this chapter, we introduce the Networked Resource Game
(NRG) to investigate the interactions of a society where actions are resource-
bounded, i.e., agents have limits on how they are able to act across their network.
In this model, agents have a finite number of resources and their network struc-
ture may affect how those resources can be coupled with others’ resources in
order to produce social rewards. One example of this is in professional networks
where agents need to form partnerships and the payoffs of the partnerships are
determined by a function of their capabilities.

Few work has been reported to study the network structure and its dynamics
affect social welfare and inequality, measured by the Gini coefficient [7], of the
resulting equilibria. For the network structure, we utilize the Erdos-Renyi (ER)
model [23], the Preferential Attachment (PA) model [1], and several other struc-
ture models. We propose an algorithm to find bilateral coalition-proof equilibria
because Nash equilibria do not lead to reasonable outcomes in this case. In pre-
vious research [18], preliminary results have been obtained to show the impact
of network structures on game dynamics. In this chapter, more comprehensive
results are presented .

In the NRG model, we only consider the cooperations between agents through
bilateral resource consumption to obtain the reward. However, it is not a very
good assumption considering the real-world cases where cooperations and com-
petitions are co-existing. In this chapter, we present a new NRG model with
positive feed-back (p-NRG) to simulate both cooperation and competition sce-
narios in a game. For both the NRG and p-NRG models, we study the impact of
network structures on the game dynamics in terms of resource allocation, social
welfare and inequality.

The remaining of this chapter is structured as the following. Section 2 gives a
full review on related works from game theory to graphical game models. Section
3 introduces the networked resource game in details. In Section 4, we introduce a
set of network structure models for empirical evaluations presented in Section 5.
In Section 6, we introduce the NRG model with positive feedback and empirical
evaluations are also given. Finally, the conclusions and future work are given in
the last section.

2 Related Works

2.1 Game Theory and Intelligent Decision Making

Game theory has influenced many research fields including economics (histori-
cally its initial focus), political science, biology, and many other fields. In recent
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years, its presence in computer science has become impossible to ignore. It fea-
tures routinely in the leading conferences and journals of artificial intelligence
(AI), theory, certainly electronic commerce, as well as in networking and other
areas of computer science. According to Shoham [25]:

One reason for such binding is application pull: the Internet calls for
analysis and design of systems that span multiple entities, each with its
own information and interests. Game theory, for all its limitations, is
by far the most developed theory of such interactions. Another reason is
technology push: the mathematics and scientific mind-set of game theory
are similar to those that characterize many computer scientists.

Increasing requirements of e-commerce initiate the development of this inter-
disciplinary research field. Especially in the field like market mechanism designs,
AI theory such as machine learning [29] and evolutionary computing [28] had
played important roles. Game theory is a framework to explore the interaction
among self-interested players. It can be explained as the study of mathematical
models of conflict and cooperation between intelligent rational decision-makers.
An alternative term suggested it as an interactive decision theory. Such decision
making is inseparable to so called multiple interacting intelligent agents within
an environment.

An Intelligent Agent (IA) is generally regarded as an autonomous entity
which observes through sensors and acts upon an environment using actuators.
Intelligent agents may also learn or use knowledge to achieve their goals. Though
an intelligent agent may have a physical structure (e.g., an autonomous robot),
it is generally a software entity that carries out some set of operations on behalf
of a user or another program with some degree of independence, and in so doing,
employ some knowledge or representation of the user’s goals or desires. In game
theory, agents can be used for experimental studies. Agents are modeled to have
bounded rationality for some decision making. In this research, homogeneous
agents are used in graphical games.

2.2 Graphical Games

In social and economic interactions - including public goods provision, job search,
political alliances, trade, partnership, and information collection - an agent’s well
being depends on his or her own actions as well as on the actions taken by his or
her neighbors. Such neighboring relations can form a network whose structure
decides the direct interaction. The literature identifying the effects of agents’
neighborhood patterns (i.e., their social network) on behavior and outcomes has
grown over the past several decades. The emerging empirical evidence motivates
the theoretical study of network effects. We would like to understand how the
pattern of social connections shape the choices that individuals make and the
payoffs they can hope to earn.

In this research, we mainly focus on the network structure in order to un-
derstand how the changes in network structure will reshape the game. In recent
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years, the games played on networks have been studied [14, 15]. A general frame-
work for the study of games in such an incomplete-information setup has been
developed [13]. Graphical games [16] are a representation of multiplayer games
meant to capture and exploit locality or sparsity of direct influences. They are
most appropriate for large population games in which the payoffs of each player
are determined by the actions of only a small subpopulation. As such, they form
a natural counterpart to earlier parametric models. Whereas congestion games1

and related models implicitly assume a large number of weak influences on each
player, graphical games are suitable when there is a small number of strong
influences.

Generally, a graphical game can be described at the first level by an undi-
rected graph G in which players are identified with vertices. The semantics of
the graph is that a player or vertex i has payoffs that are entirely specified by the
actions of i and those of its neighbor set in G. Thus G alone may already specify
strong qualitative constraints or structure over the direct strategic influences in
the game. To fully describe a graphical game, we must additionally specify the
numerical payoff functions to each player but now the payoff to player i is a
function only of the actions of i and its neighbors, rather than the actions of the
entire population. In the many natural settings where such local neighborhoods
are much smaller than the overall population size, the benefits of this parametric
specification over the normal form are already considerable.

2.3 Nash Equilibria for Graphical Games

It is known that finding Nash equilibria for graphical games is difficult even for
restricted structures [5]. Local heuristic techniques are commonly employed [4,
10]. A seminal work in using agent-based simulation to study human interaction
was Axelrod’s tournament for Prisoner’s Dilemma [2]. Prisoner’s Dilemma has
also been studied in a graphical setting with simulated agents [20]. Dynamic
networked games based on the Ultimatum Game have also been investigated [17]
Research on identification and development of networks includes analyzing event-
driven growth [24] and inferring social situations by interaction geometry [9].

Some other works have described algorithmic methods to discover temporal
patterns in networked interaction data [11]. Researchers have formulated effi-
cient solution methods for games with special structures, such as limited degree
of interactions between players linked in a network, or limited influence of their
action choices on overall payoffs for all players [16, 22, 26]. Another line of re-
search focuses on the design of agents that must maximize their payoffs in a
multi-player setting. If self-play convergence to Nash equilibrium is a desider-
ata for agent policies, In [3], the authors show the convergence of certain kinds
of policies in small repeated matrix games. If correlated Nash equilibrium is
our goal, it has also been shown that using another set of adaptive rules will
result in convergence to a correlated equilibrium [8]. Other work has taken a

1 http://en.wikipedia.org/wiki/Congestion game
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different approach, and does not presume the equilibrium is a goal; rather profit
maximization is the only metric.

Part of the original motivation for graphical games came from earlier mod-
els familiar to the machine learning, AI and statistics communities collectively
known as graphical models for probabilistic inference, which include Bayesian
networks, Markov networks, and their variants. Both graphical models for infer-
ence and graphical games represent complex interactions between a large number
of variables (random variables in one case, the actions of players in a game in the
other) by a graph combined with numerical specification of the interaction de-
tails. In probabilistic inference the interactions are stochastic, whereas in graph-
ical games they are strategic (best response). The connections to probabilistic
inference have led to a number of algorithmic and representational benefits for
graphical games.

Graphical games adopt a simple graph-theoretic model. An n-player game
is given by an undirected graph on n vertices and a set of n matrices. The
interpretation is that the payoff to player i is determined entirely by the actions
of player i and his neighbors in the graph, and thus the payoff matrix for player
i is indexed only by these players. We thus view the global n-player game as
being composed of interacting local games, each involving (perhaps many) fewer
players. Each player’s action may have global impact, but it occurs through the
propagation of local influences. Formally, a graphical game model is a tuple

[I, {Ai}, {Ji}, {ui(·)}]

where I and Ai are as before, Ji is a collection of players connected to i, and
ui(ai, aJi

) is the payoff to player i playing ai ∈ Ai when the players Ji jointly
play aJi

. The notation aJi
⊂ a−i means that each j ∈ Ji plays its assigned

strategy from a−i. We define AJi
to be the set of joint strategies of players in

i’s neighborhood. This game structure is captured by a graph

G = [V,E] (1)

in which V = I (i.e., each node corresponds to a player) and there is an edge

e = (i, j) ∈ E if j ∈ Ji

The graph topology might model the physical distribution and interactions
of agents: each sales-person is viewed as being involved in a local competition
(game) with the salespeople in geographically neighboring regions. The graph
may be used to represent organizational structure: low-level employees are en-
gaged in a game with their immediate supervisors, who in turn are engaged in a
game involving their direct reports and their own managers, and so on up to the
CEO. The graph may coincide with the topology of a computer network, with
each machine negotiating with its neighbors (to balance load, for instance).

Graphical games also provide a powerful framework in which to examine the
relationships between the network structure and strategic outcomes. Of partic-
ular interest is whether and when the local interactions specified by the graph
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G alone (i.e., the topology of G, regardless of the numerical specifications of the
payoffs) imply nontrivial structural properties of equilibria. It can be shown that
different stochastic models of network formation can result in radically different
price equilibrium properties. In [21], the authors give an example that considers
the simplified setting in which the graph G is a bipartite graph between two
types of parties, buyers and sellers . Buyers have an endowment of 1 unit of
an abstract good called cash, but have utility only for wheat; sellers have an
endowment of 1 unit of wheat but utility only for cash. Thus the only source of
asymmetry in the economy is the structure of G. If G is a random bipartite graph
(i.e., generated via a bipartite generalization of the classical Erdos-Renyi model),
then as n becomes large there will be essentially no price variation at equilib-
rium (as measured, for instance, by the ratio of the highest to lowest prices for
wheat over the entire graph). Thus random graphs behave “almost” like the fully
connected case. In contrast, if G is generated according to a stochastic process
such as preferential attachment. the price variation at equilibrium is unbounded,
growing as a root of the economy size n.

In previous work, there has been tremendous interest in agent strategies in
different games and auctions. Many have shown to optimize the social welfare,
reduce the inequality and reach equilibrium in the social network [19], or how to
get stable in a network, where the participants have special preference [12]. Gini
coefficient is commonly used as a measure of inequality of income or wealth. Its
value depends on both income inequality and other factors such as the network
structure [7, 30].

3 Networked Resource Game Model

Similar to a standard graphical game, the Networked Resource Game is defined
by a set of N players {pi}Ni=1, a card distribution C, a graph G and a reward
function R. At each round, the games are played based on a matrix M where
each element indicating a link exists between the two players. In the Networked
Resource Game, the actions are based on available resources, which we will
informally call cards. Each player pi has a set of cards:

Ci = {ci,1, . . . , ci,NC
i
}

where NC
i is the number of cards for the player pi. The cards represent a skill

or resource that the player can play on a link. The graph specifies the links
over which players may play their cards. Here, we include the restriction that a
player may play at most one card on a link. Thus, the number of cards indicate
a players ability to have multiple simultaneous partnerships. It is possible that
a player has more links than cards and also more cards than links.

Each card has a type which comes from a predetermined type set T , i.e.,
ci,j ∈ T . For simplicity, given a discrete type set, we can think of the type as
a color and that each card has a particular color. The graph G = {eij} which
has undirected edges between the players, where e(i, j) denotes the link between
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pi and pj . It is possible that some players have no links between them. Each
card can only be used once per round. Each card is one of T types, and the
matrix game can be defined by a (|T |+ 1)× (|T |+ 1) payoff matrix where each
row/column is one of the |T | card types or the null action, and where the value
pairs in the cells are the rewards for the two players.

7,7

7,9

3,5

9,7

6,6

2,5

5,3

5,2

1,1

0

0

+7

+7 +9

+5
+2+9

+9
+7

Fig. 1. An example of the Networked Resource Game. The matrix on the right-hand
side gives the payoff matrix by playing different type of cards. Each agent is initialized
with different type and number of cards. For example, the player at the center of the
network has 3 cards and they are 2 greens and one yellow. By playing these cards with
3 of his 4 linked neighbors he received rewards of 9+9+2 = 20 that is calculated based
on the given payoff matrix. For the agent on the upper left corner, he has received 0
payoff because there is no card-playing between him and his two linked neighbors.

As usual, in this chapter, we assume that M is fixed, is symmetric, and is the
same for every link. Based on what cards are played on a link, each player gets
a reward specified by the function R(a, ā) and a, ā ∈ A where A is the action
space. The payoff matrix R (we use the same R for the reward function as well)
is defined by:

R(a, ā) a, ā ∈ A
For example in Fig. 1, the payoff matrix is shown:

R(green, green) = (7, 7)

R(green, red) = (9, 7)

and so on. However, it implicitly contains the situation of null actions like the
following:

R(null, red) = (0, 0)

So that the acutual action space for player pi on link eij is

Aij = Ci ∪ 0 (2)
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where 0 indicates that the player chose not to play one of their cards on that
link. Similarly, for the player j its action space is:

Aji = Cj ∪ 0 (3)

The reward function R has (|T |+1)2 inputs representing every combination of
actions, i.e., all card types and not playing a card, for each player. The Networked
Resource Game is similar to a standard graphical game, however, the action
space has restrictions over multiple links whereas in standard graphical games,
actions on link are independent. Here, we have the restriction that ∪jaij ⊂ Ci

where aij is player pi’s action on link eij . This states that a player cannot play
more cards than they have, which introduces a coupling over links.

An illustration of the game is shown in Fig. 1. It shows a game involving
three card types (green, red and yellow). One can imagine that these cards
represent assets of value in an economy that yield different outcomes to each
contributor in partnerships. For example, a green card could represent capital,
red could represent skilled labor and yellow could represent unskilled labor.
Different combination of these resources may result in different rewards. For
example, capital plus skilled labor may yield much more rewards than capital
plus unskilled labor for both sides.

4 Network Formation and Finding Equilibria

4.1 Network Structure Models

In this section we describe a few models we use to create social network graphs
and how to find the equilibria for a given graph is discussed. Network formation
is determined by various growth processes that describe how a link is added to
an existing graph. In this chapter, we use the following four network structure
models:

Erdos-Renyi (ER)

The Erdos-Renyi (ER) model is either of two closely related models for gener-
ating random graphs. In the ER(n,M) model, where n is the number of nodes
in a graph. A graph is chosen uniformly at random from the collection of all
graphs which have n nodes and M edges. For example, in the G(3, 2) model,
each of the three possible graphs on three vertices and two edges are included
with probability 1/3.

In the ER(n, p) model, a graph is constructed by connecting nodes randomly
with probability p independent from every other edge. This model is named after
Paul Erdo and Alfred Renyi who published On the Evolution of Random Graphs
in 1960 [6]. This is a baseline process where we add a link chosen uniformly from
those links that do not already exist in the graph. In this model, we connect
each pair of nodes with some given probability (See Fig. 2).
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Fig. 2. An example of the ER model (left) and the PA model (right), where the red,
yellow, and green dots represent the randomly distributed cards for each of the 12
players.

Preferential Attachment (PA)

If the input graph has zero or one link, we use the ER process. Thus, the network
is seeded with two random links. After this, in order to add a link, we choose a
node randomly and consider the links it could add to the graph, i.e., the set of
links connected to the chosen node that are not already in the graph. Each such
link is given a weight equal to the degree of the target node it connects to, and
a link is chosen in proportion to these weights. Preferential attachment models
have been proposed as a model that reflects how social networks are formed,
particularly online.

Most Free Cards (MFC)

Each node is given an MFC score: the number of cards it has minus the number
of links it has, i.e., a measure of the number of free cards for that player. The
process selects a node uniformly from those that have the highest MFC score.
This node then chooses a link uniformly from other nodes that have the highest
MFC score. When the MFC scores are all zero, the algorithm becomes ER.

Poor-to-Rich Chain (PRC)

We first associate each player with a wealth calculated as the sum of the value
of their cards, where the value of each card is the maximum reward obtainable
from applying that card:

wi =
∑
c∈Ci

max
a∈T∪0

R(c, a) (4)
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Fig. 3. An example of the MFC model (left) and the PRC model (right), where the
red, yellow, and green dots represent the randomly distributed cards for each of the 12
players.

We first create a chain, where agents are ordered by wealth with ties broken
randomly. Then, a player is chosen uniformly from those with the highest MFC
score adds a link. The target node is the closest node in the chain with a free
card, i.e., an MFC score greater than zero.

The various processes described above capture various degrees of control
that players may have over the network on which they play. In the ER and
PA models, players have no control over links. One may consider PA as player
driven, but the game properties (card, rewards) do not affect the formation of
the links so the processes are not strategic. The MFC model is a decentralized
strategic model where agents have partial information about the state of the
world, namely the number of cards and links for each player. The PRC model
is a centralized model that takes game parameters into account when making
the graph and incorporates a social structure into the world where people with
similar wealth are more likely to be connected to each other.

4.2 Finding Equilibria

Given a game structure (cards, rewards, and a graph), we would like to determine
an appropriate outcome. Nash equilibria are often considered as a solution for
graphical games, however, it has some issues for the Networked Resource Game.
Consider a simple example of four players in a sequentially connected graph
where each player has only one card. Two players have a single red card and two
players have a single green card. Let the rewards for having two cards with same
color on a link be 100 points of reward for each player, two cards with different
colors on the same link be 10 points, and all links with one or zero links be worth
nothing (see Fig. 4).
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Consider the situation where we have two red-green links and each player
receives 10 points of reward. For that case, each player has no incentive to
deviate, i.e, move their one card to another link, because that would cause a
loss of 10 points, even though each player has a link to a player with the same
color card. Thus, in the Networked Resource Game, Nash equilibria lead to
artificially poorer results than one would expect if one was playing this game
assuming players could communicate over the links that they have. Thus, we
consider equilibria where players can make bilateral deviations. An equilibrium
in this context is a state where no player would choose to make a unilateral
deviation and no two players would choose to make a bilateral deviation. We use
the procedure below to discover such equilibria for a given game structure.

Fig. 4. Nash equilibria may not yield the best rewards for the Networked Resource
Game. Considering the case that 4 players are connected sequentially. In the left-hand
side figure, the game is with the Nash equilibria as none of the players has motivation
to make unilateral change that will result in losing 10 point rewards though they may
obtain much more points (+100) by making bilateral change as shown in the right-hand
side figure.

Each player first assigns cards randomly to available links. We then perform
action updates in a series of rounds. In each round, we order the set of links. For
each link, the players iterate back and forth on card choices for the link. On the
first iteration, the first player assumes that the other player plays one of their
cards, chosen from all cards that player has, i.e., not necessarily the card being
played on the link currently. The first player then plays their best response on all
links given the cards that are played on all the links that they have. In the second
iteration and all following iterations, the acting player chooses their best response
to the cards that are being played on their link. This procedure continues until
an equilibrium is reached for that link or we reach a preset limit of interactions.
We continue this procedure for all links in each round. The procedure terminates,
when at the end of a round, the joint actions are the same as the joint actions
in the previous round. The procedure continues for a preset number of rounds.
Finding equilibria in graphical games is a challenging problem. The algorithm
presented at below is sound in that if it terminates before reaching the preset
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number of rounds, we know that the resulting joint action is an equilibrium for
the game, however, we may not find all equilibria.

Pseudo Code of FINDING-EQUILIBRIA for computing bilateral coalition-proof
equilibria

Algorithm FINDING-EQUILIBRIA
Inputs: one game structure(cards,rewards and a graph)

Outputs: bilateral coalition-proof equilibria

Each player first assigns cards randomly to available links

equilibria ← 0

for round ← 1 to n1

do order the set of links
num ← 1

repeat
(1)one player Pi assumes that the other player Pj

which links with Pi plays one of its cards

(2)Pi plays their best response on all links given the

cards that are played on all the links that they have

(3)Pj chooses their best response to the cards

that are being played on their link

(4)num ← num+ 1
until an equilibrium is reached for that link

or num = n2
if the joint actions = joint actions in the previous round
then return equilibria
else return -1

5 Experimental Studies

The Gini coefficient (also known as the Gini index or Gini ratio) [7, 30] is a
measure of statistical dispersion, it is named after the Italian sociologist Corrado
Gini2. It measures the ratio of areas above the Lorenz curve which plots the
proportion of the total income of the population that is cumulatively earned by
the bottom x% of the population. The Gini coefficient measures the inequality
among values of a frequency distribution. A Gini coefficient of zero expresses
perfect equality, while the Gini coefficient of one expresses maximal inequality
among values (for example where only one person has all the income in a society),
i.e., larger Gini coefficients indicate greater income disparity. In this chapter, the
Gini coefficient is used as a measure of inequality.

In our experiments, we considered a society of consisting 12 players. In each
round, each player was given a number of cards chosen uniformly from one to
five:

|Ci| ∼ U(1, 5)

2 http://en.wikipedia.org/wiki/Gini coefficient
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We had three card types: green, red, and yellow. Card colors were selected inde-
pendently for each card using the following probabilities:

P ([green red yellow]) = [0.20 0.40 0.40]

5.1 Reward Functions

There were two methods for selecting reward functions to generate the payoff
matrix: (1) In the baseline method, each reward for links with two cards on them
were chosen randomly:

R(c1, c2) ∼ U(1, 1000) for c1, c2 ∈ T (5)

Links with one or zero cards gave zero reward to both players. (2) In the al-
ternate method, the reward for an arbitarily chosen link (e.g. green-green) is
replaced with 100 times the value of the maximum of all the rewards in the
baseline method. The latter is to investigate a society where there is a signifi-
cantly outlying reward available to a small number of people if they make the
right connections. We can exaggerate the variance of rewards in such a way we
can observe the game dynamics more clearly.

It is for this reason that the green cards occur at lower likelihood than the
others. For a given game card and reward structure, we would run our various
network formation algorithms and generate graphs of increasing size. Each net-
work formation algorithm was run 10 times, thus generating 10 graphs with the
same number of edges for each process. For each game structure (cards, rewards
and graph) that resulted, we would find the set of equilibria. For each graph,
the equilibrium-finding algorithm was run 40 times and each run was ended if
the algorithm didn’t terminate in 15 rounds.

For any single equilibrium, we calculated the social welfare as the sum of all
the rewards to all players and the Gini coefficient. For each game, we calculated
an associated social welfare with the weighted average of social welfares of equi-
libria of that game, where weights were the number of times the equilibrium was
discovered. We calculated associated Gini coefficients for each game structure
similarly.

The Gini coefficient is normalized between zero (everyone has equal wealth)
and one (one person has all the wealth), but social welfare for each game is a
function of the payoff matrix. We use the following way to normalize the social
welfare. First, we need to calculate the maximum value of all possibly generated
social welfare by:

max
∑

(c1,c2)∈C2

nc1,c2 (R(c1, c2) +R(c2, c1)) (6)

such that
∑
c̃∈T

nc,c̃ ≤ nc ∀c ∈ T, nc,c̃ ≥ 0, ∀c, c̃ (7)

This considers all possible combinations of cards on a link (c1, c2) ∈ C2 and
maximizes the reward obtained for having a particular number of card combina-
tions on the graph (nc1,c2) with the rewards obtained for that card combination
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(R(c1, c2) +R(c2, c1)), such that the number of card combinations of the graph
does not violate the card constraints, i.e., the number of cards of a particular
type (nc) and non-negativity of the number of combinations. This yields an up-
per bound on the social welfare because it allows multiple links between players
and links between cards of the same player. We use this to normalize social
welfares across different card and reward structures.

5.2 Experimental Results

Fig. 5 shows how social welfare changes as a function of network formation algo-
rithm and graph size. We did not show the error bars for clarity in presentation
but we discuss significance below. We see that social welfare improves as the
society gets more connected for all algorithms. MFC and PRC are significantly
better than ER and PA. ER is slightly better than PA but the result is not
statistically significant. These results hold in both reward scenarios. For base-
line rewards, MFC and PRC both reach about 0.9 efficiency in social welfare
at about 18 links and do not improve much beyond that. We also see the im-
pact of network structure as the 28-link ER and PA graphs are less efficient
that MFC and PRC graphs that are half the size. For alternate rewards, the
efficiency is significantly smaller than the baseline word, this could be the result
of two factors: there are green-green links that are not being formed, and our
normalization could be overcounting the number of potential green-green links.
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Fig. 5. Social welfare of given structure models with increasing number of edges. The
left-hand side figure is with baseline rewards and the right-hand side one is with alter-
nate rewards.

Fig. 6 shows how Gini coefficients change as a function of network formation
algorithm and graph size. Inequality decreases as the network sizes increase. For
the baseline reward structure, MFC, PRC and ER are significantly better than
PA. The key change is that ER has jumped from the PA equivalence class to the
MFC/PRC equivalence class. We note that the Gini coefficient is relatively flat
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Fig. 6. Gini coefficient of given structure models with increasing number of edges.
The left-hand side figure is with baseline rewards and the right-hand side one is with
alternate rewards.
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Fig. 7. Wasted card percentage with the increasing graph size.

after about 18 links. For the alternate reward structure, all the algorithms are
in the same equivalence class. This is because once a few green-green links are
formed, it is difficult to change the inequality of the world.

We then investigated the number of wasted cards in equilibrium, i.e., the
number of cards that did not yield any reward to the player holding it. Fig. 7
shows the number of wasted cards as a percentage of the total number of cards
in a society. We see that wasted cards explains a lot of the phenomena in social
welfare. The MFC and PRC algorithm, which has an MFC component, waste
the fewest cards because that is part of their process. The others form links that
are not as useful in allowing players to use their cards. ER performs slightly
better that PA because it does not overload particular users with large numbers
of links. Thus as fewer cards are wasted, social welfare improves. This similarly
explains the Gini coefficient because as more cards are used, we have fewer users
with low or no rewards. Nevertheless, it is interesting to note that while ER
wastes more cards than MFC and PRC, it does not perform worse in terms of
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Fig. 8. Social welfare and Gini coefficient by average and variance of degree in graph
with baseline rewards.
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Fig. 9. Social welfare and Gini coefficient by average and variance of degree in graph
with alternate rewards.

inequality. This remains an open question. Interestingly, with half the possible
links (33), we still have about 10% of cards being wasted.

We also looked at the impact of network properties on outcomes. Fig. 8 shows
social welfare and Gini coefficient as a function of the average and variance of
the degrees of the nodes in the graph. Clearly, this will depend on the card and
reward structure. In our case, both average and variance of degree showed simi-
lar curves in increasing social welfare and decreasing inequality. The inequality
curves are similar in both reward structures and the social welfare curves are
close to the best performing algorithms as a function of graph size. We believe
the Networked Resource Game is a good starting point for modeling and in-
vestigating the complexities and design of economies of resource-bounded and
socially networked agents.
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Fig. 10. Gini coefficient comparison be-
tween NRG and p-NRG in the ER model.
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Fig. 11. Social welfare comparison between
NRG and p-NRG in the ER model.
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Fig. 12. Gini coefficient comparison be-
tween NRG and p-NRG in the MFC model.
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Fig. 13. Social welfare comparison between
NRG and p-NRG in the MFC model.
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Fig. 14. Gini coefficient comparison be-
tween NRG and p-NRG in the PRC model.
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Fig. 15. Social welfare comparison between
NRG and p-NRG in the PRC model.
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6 Positive Feedback

In this section, we introduce a new model that we can use to simulate the both
cooperations and competitions in a game. In each game, we like to reassign the
cards to players based on his previous rewards. This is like that the rich people
are likely to get more resources while such resources may help him become richer.
This phenomenon is modeled be the following the following NRG model with
positive feedback (p-NRG).
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Fig. 16. Wasted card percentage, comparison of the baseline and positive-feedback
NRG model given with the ER (left) and MFC (right) structure.

Given a game structure (cards, rewards and a graph), each game is conducted
as a sequence of sub-games. In a sub-game, the agents only play their cards once.
Like in the classical NRG, each player is first given a number of cards chosen
uniformly from 1 to 5:

|Ci| ∼ U(1, 5)

We calculated each player’s (pi) welfare: Wi at the end of each sub-game. At the
beginning of a sub-game, each player will be re-assigned with new cards provided
by a card-pool wit infinite number of cards. At each round of the sub-game, N
cards will be drawn from the pool based on a given probability distribution on
card types. For a particular player pi, the number of new cards he can get is
depending on the welfare Wi he obtained at this round. In other others, the
ones with large welfare values tends to get more new cards at the next round of
sub-game. The probability for getting more new cards is calculated by

Pi =
Wi + θ∑N

i=1Wi +Nθ
(8)

where θ > 0 is smoothing factor used to avoid getting zero probabilities. In the
following experiments, we first assign the card-pool distribution by:

P ([green red yellow]) = [1/6 2/6 3/6]
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Each game is consisting 5 sequential sub-games. In this new game, the Gini
coefficient of each game is the average value of the five sub-games, and social
welfare is the sum of five sub-games.

The experimental results are presented in Fig. 10 to 17. In comparisons of
NRG with and without positive feedback, we found that the results are similar
for the ER and MFC models in both social welfare and Gini coefficient. However,
we found there is a significant variance in the experiments with the PRC model.
As we can see from Fig. 14 and 15, the p-NRG model is less than the classical
NRG model in both the social welfare value and Gini coefficient. By introducing
the positive feedback, the system becomes less productive in terms of social
welfare. It hurts the economy somehow by introducing such circular causations.
However, the social inequality is roughly the same comparing to the classical
NRG. Based on our observation, positive feedback may hurt social welfare but
won’t influence the social inequality significantly.
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Fig. 17. Wasted card percentage, comparison of the baseline and positive-feedback
NRG model given with the PRC structure.

7 Conclusions and Future Work

In this chapter, we proposed a graphical game which is referred to as the Net-
worked Resource Game. Based on this game, we investigated how network struc-
ture may influence the social welfare and inequality measured by the Gini coeffi-
cient. Based on empirical evaluations, we found that different network structure
may lead to different game dynamics in terms of increasing social welfare and
decreasing Gini Coefficient. Efficient interactions of players will increase both
the social welfare as well as social equality. For the NRG with positive feedback,
we found that introducing of positive feedback may lead to a less productive
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society but it won’t cause significant social inequality comparing to the classical
NRG model.

One potential future direction is using these properties as part of the net-
work formation process because they may be more easily estimated than the
requirements of the processes we presented. We also plan on investigating games
where more than two players can collaborate. It is also a challenge to investigate
appropriate outcomes for graphs as the scale of the society grows as equilibrium
discovery will become more computationally demanding.
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