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ABSTRACT

We present an automatic breast cancer grading method in
histopathological images based on the computer extracted
pixel-, object-, and semantic-level features derived from
convolutional neural networks (CNN). The multiple level
features allow not only characterization of nuclear poly-
morphism, but also extraction of structural and interpretable
information within the images. In this study, a hybrid level
set based segmentation method was used to segment nuclei
from the images. A quantile normalization approach was uti-
lized to improve image color consistency. The semantic level
features are extracted by a CNN approach, which describe
the proportions of nuclei belonging to the different grades,
in conjunction with pixel-level (texture) and object-level
(structure) features, to form an integrated set of attributes.
A support vector machine classifier was trained to discrim-
inate the breast cancer between low, intermediate, and high
grades. The results demonstrated that our method achieved
accuracy of 0.92 (low vs. high), and 0.74 (low vs. interme-
diate), and 0.76 (intermediate vs. high), suggesting that the
present method could play a fundamental role in developing
a computer-aided breast cancer grading system.

Index Terms— breast cancer grading, multi-level fea-
tures, convolutional neural networks, histopathology

1. INTRODUCTION

Breast cancer grading on histopathological images is consid-
ered as a standard clinical practice for the diagnosis and prog-
nosis of breast cancer development. The Nottingham grading
system is the most widely used criterion for histological diag-
nosis of invasive breast cancers with combination of nuclear
pleomorphism, tubular formation, and mitotic count [1] (see
Fig.1). In routine histological analysis, pathologists perform
grading by manually examining breast cancer tissue specimen
under a microscope, which is a tedious and subjective process
and thus suffer inter- and intra-observer variations. In this
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Fig. 1. Examples of breast cancer histopathological image
patches for low, intermediate, and high Nottingham grades
showing different appearances of nuclear polymorphism in
histopathology.

work, we aim to developing an automatic breast cancer grad-
ing method in digitized histopathological images, mimicking
the Nottingham grading system approach, in order to assist
pathologists in enhancing the operational efficiency as well
as improving diagnostic confidence.

Recently, many techniques have been presented for auto-
matic breast cancer grading based on the Nottingham scoring
system in histopathological images [2]. For instance, Petushi
et al. modeled the microstructure present in histopathology
to characterize the localized tubular formation [3]. Wan et al.
presented a statistical method to automatically detect mitotic
cells [4]. These methods handle only one of three criteria
in the Nottingham system. Further, Basavanhally et al. in-
troduced a multi-field-of-view framework to integrate image
nucleus features including graph-based and textural features
to discriminate low, intermediate, and high grades of breast
cancers [5]. This motivates our work to differentiate breast
cancer grades by combining multiple levels of features.

In this work, we present an automatic method for breast
cancer grading based on a combination of pixel-, object-, and
semantic-level features. The pixel-level features characterize
the micro-textures within the nuclei. The object-level features
are computed using three different graphs to quantify nuclear
architecture. Although these features are directly computed
from images reflecting explicit attributes that pathologists
look for when grading breast cancers, there is another cate-
gory of feature generation inspired by convolutional neural
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Fig. 2. Workflow of the breast cancer grading method. The nuclei are segmented from the original histopathological images and
normalized before extracting pixel-, object-, and semantic-level features. The cancer grade is determined via a SVM classifier.

networks (CNN). In [6], Wang et al. showed that a combi-
nation of CNN modeled and handcrafted features for mitosis
detection yielded improved detection results. We compute
the semantic-level features via a data-driven CNN approach
which can learn additional feature bases that cannot be rep-
resented through any of pixel- and object-level features. Our
semantic-level features calculate potential proportions of
nuclei belonging to the different cancer grades. The work-
flow of the presented method is depicted in Fig.2. A hybrid
level set based segmentation method was used to automated
segment nuclei from the images. A color-map quantile nor-
malization approach was utilized to correct image intensity
variations. The features were extracted independently and
evaluated through support vector machine (SVM) classifica-
tion. In summary, key contributions of this work include:
(i) A integration of multiple level features for breast cancer
grading; (ii) Learning important features for differentiating
breast cancers with low, intermediate, and high grades.

The remainder of this paper is organized as follows. The
methods are described in Section 2. In Section 3, we demon-
strate experimental results with discussion. Section 4 con-
cludes the paper.

2. METHODOLOGY

2.1. Nucleus Segmentation

To segment nuclear regions, we use a hybrid level-set method
[7], which combines boundary and region information to per-
form image segmentation. The method tends to minimize
the energy function defined as: ε = α

∫
(I − µ)H(φ)dω +

β
∫
g|5H(φ)|dω where I is the image, φ is a zero level set

function, ω refers to image region, µ is a pre-defined upper
bound of the grey value, g = g(|5I|) is the feature gradient
of image, H(φ) is a step function, α and β are weights for the
closed curve and geodesic active contour model, respectively.

2.2. Stain Normalization

Our histopathological images are stained with hematoxylin
and eosin (H&E). To achieve a consistent color and intensity

appearance, we use a pixel-based color-map quantile normal-
ization method [8]. We define three ranking functions F c,
where c ∈ [R,G,B] (color space). We adjust the color val-
ues on a pixel-by-pixel basis to match the color distribution
of a source image s to that of a target image t. For example,
F c
s (k

c
s) = rcs,k, where kcs ∈ [0, 255], and rcs,k ∈ [1, Ns], Ns

is the number of pixels in s. We map the kth pixel intensity
in c color channel to a rank rcs,k. The normalization of kcs is

computed via k̃cs = F−1c
t([

rcs,k
Ns

Nt +
1
2 ]).

2.3. Feature Extraction

We compute three types of features that capture image at-
tributes at the pixel, object, and semantic levels.
Pixel-level features

The extracted pixel-level features consider all image pix-
els and capture property of texture to quantify image sharp-
ness, contrast, changes in intensity, and discontinuities, etc.
We compute Haralick gray-level co-occurrence matrix fea-
tures, Gabor filter, and speeded up robust features (SURF)
[9] to form the pixel-level feature set (Fp). We calculate
mean, median, variance, and minimum-to-maximum ratio on
the Gabor filtered images. The SURF features are scale and
rotation-invariant descriptors to characterize the intensity dis-
tribution of the pixels within the neighborhood of the point of
interest. These local features are useful in the characterization
of small objects, such as nuclei.
Object-level features

The object-level features are used to capture the spatial
distribution of nuclear structures within the image figures.
We compute three spatial graphs, including Voronoi diagram
(VD), Delaunay triangulation (DT), and minimum spanning
tree (MST), for extracting topological features. The VD is
defined by a set of convex polygons surrounding all nuclear
centroids C = {c1, ..., cn}. The polygons are defined as
P (ci) = {C|D(C, cj) ≤ D(C, ci)}, where j 6=i, j = 1, ...n
and D(·) is Euclidean distance. The DT is simply the dual
graph of VD and is constructed by connecting three points cr,
cs, ct, when three polygons, P (cr), P (cs) and P (ct) are con-
nected with an intersection point of VD. The MST is a span-



ning tree of a connected, undirected graph which connects all
the vertices together with the minimal weighting for its edges.
We measure area, perimeter, and chord length for the VD, side
length and area for the DT, and branch length for MST. In ad-
dition, we compute the number of nuclei within a pre-defined
circle region and radius of the circle containing a particular
number of nuclei to describe the density of the nuclear dis-
tribution. The 4 statistical features (mean, median, variance,
and minimum-to-maximum ratio) of these graph and density
measures are computed to provide a set of 32 object-level fea-
tures (Fo).
Semantic-level features

Compared to pixel- and object-level features, semantic-
level features are in a higher level of the information hierarchy
which can easily capture interpretable concepts [8]. With the
large amount of biological variations present in histopatho-
logical images due to the heterogeneity of cancer biology, de-
velopment of CNN-derived semantic-level descriptors which
involves a large data training becomes feasible. Since CNN
approach is a supervised feature generation method, we train
the CNN model with labeled segmented nuclei having low,
intermediate, and high grades. The CNN architecture is de-
signed with 2 consecutive convolutional and pooling layers,
and a fully-connected layer (see Fig.3) [6]. The extraction of
semantic-level features (Fs) is as follows:
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Fig. 3. A 3-layer CNN model with two convolutional and
pooling layers, and a fully-connected layer.

1. Input: The nuclear figures with RGB color channels are
resized into 32× 32 pixels;
2. Convolutional layer: A two-dimensional convolution of
the input feature maps with a 9 × 9 convolution kernel. The
convolution function defined as yj = tanh(

∑
i kijxi), where

tanh(·) is an activation function, kij is a convolution kernel,
xi and yj represent the value of the ith input and jth output
feature maps, respectively;
3. Pooling layer: We apply a subsampling pooling operation
over a 2× 2 non-overlapping window on each output feature
map, allowing to learn the invariant features;
4. Fully connected layer: 38 neurons in this layer are con-
nected to the output feature maps of pooling layer;
5. Output: Three neurons (low, intermediate, and high grades)
in this layer are activated by a logistic regression model;
6. The proportions of nuclei belonging to different grades are
computed.

2.4. SVM based Classification

The computerized features are evaluated via a SVM classifier
to distinguish images with different grades. The SVM clas-
sifier projects the feature set onto a higher dimensional space
using a linear kernel and the hyperplane that most accurately
separates the two classes is determined. The grading algo-
rithm presented below is finally performed to determine the
cancer grade of image I .

The Grading Algorithm
Input: Image I , SVM classifier C(F, p)
Output: Cancer grade G(F, P )
begin
1. Divide I into M image patches P = {p1, ..., pM};
2. Segment K nuclei ni = {ni1, ..., ni

K} from pi;
3. Stain normalization of n1, ..., nM ;
4. Train CNN model for extracting Fs;
5. Feature set Fi = {Fp, Fo, Fs}, i ∈ {1, ...,M};
6. C(Fi, pi), G(F, P ) = sign( 1

M

∑M
i=1 C(Fi, pi)).

end

3. EXPERIMENTAL RESULTS

3.1. Experimental Design

A total of 89 H&E stained slides were collected from 89 pa-
tient studies diagnosed using the Nottingham grading system
(low: N = 22; intermediate: N = 49; high: N = 18).
All slides were digitized via a whole slide scanner (Motic c©,
Xiamen, China) at 40× magnification. An expert pathologist
manually delineated the regions of interest containing cancer-
ous tissues, which were divided into 6740 non-overlapping
image patches (1000×1000 pixels). We used 865 patches
from 18 patient studies containing about 4000 nuclei for each
grade category to compute CNN-based semantic features.
The rest of 71 cases (5875 patches) were randomly sampled
to generate a training set Ztra and a testing set Ztes with
Ztra

⋂
Ztes = ∅. The slide grade was determined by the

majority of grade categories associated with the patches.
The classification was performed via an iterative 2-fold

cross-validation process, and the resulting mean and standard
deviation of the classification accuracy were computed. In
addition, the receiver operating characteristic (ROC) analysis
and an area under the curve (AUC) were used to quantitatively
measure the extracted features’ ability in distinguishing low,
intermediate, and high grades of breast cancers.

3.2. Results

The classification results using pixel-level features (Fp),
object-level features (Fo), semantic-level features (Fs), and
their combinations are listed in Table 1. We noted that the
combination of CNN-learned semantic-level and object-level
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Fig. 4. ROC curves of different feature sets in (a) low versus high grades; (b) low versus intermediate grades; (c) intermediate
versus high grades. The semantic-level features (Fs) or its combinations yielded the best classification performance.

features yielded the best performance in distinguishing low
from high grade breast cancers with the accuracy of 0.92. The
combinations of three feature types achieved the highest ac-
curacy in the other two classification tasks. The ROC curves
(see Fig.4) also provide consistent results in terms of AUC
values. In all the three classification tasks, the semantic-level
features outperformed the other two types of features and
their combinations, due to the fact that the CNN-derived fea-
tures were fully data-drive, therefore they are more accurate
in representing training samples and are able to find fea-
ture patterns that the other two feature types fail to describe.
Further, the extracted semantic-level features are low dimen-
sional which result in a significant reduction in storage of the
image features, as well as in the computational complexity of
the classification task.

Table 1. Classification accuracy using pixel-level (Fp),
object-level (Fo), semantic-level (Fs) features, and their com-
binations.

Feature set Classification task
Low vs. High Low vs. Inter Inter vs. High

Fs 0.91±0.03 0.73±0.02 0.75±0.02
Fo 0.79±0.06 0.72±0.07 0.71±0.02
Fp 0.68±0.10 0.71±0.03 0.72±0.02

Fs + Fo 0.92±0.03 0.70±0.02 0.74±0.02
Fs + Fp 0.89±0.04 0.72±0.03 0.75±0.03
Fo + Fp 0.80±0.07 0.71±0.03 0.71±0.03

Fs + Fo + Fp 0.90±0.03 0.74±0.03 0.76±0.04

4. CONCLUSION

In this paper, we presented a multi-level feature based method
for automatic breast cancer grading of histopathological im-
ages. The pixel-, object-, and semantic-level features and
their combinations were evaluated via a SVM classifier for
distinguishing different grades of breast cancers. The quanti-
tative results suggested that our new CNN-derived semantic-
level features are promising image markers to stratify more or

less aggressive breast cancers.
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